
The importance of time:

Modelling network intrusions with

long short-term memory

recurrent neural networks

Ralf Colmar Staudemeyer

A thesis submitted in ful�lment of

the requirements for the degree of

Doctor Philosophiae

in the Department of Computer Science

UNIVERSITY OF THE WESTERN CAPE

May 2012

Supervisor: Prof. Dr. Christian W. Omlin

for Jasper

Keywords: network intrusion detection, machine learning, time
series, feature extraction, decision trees, naïve Bayes, Bayesian
networks, support vector machines, recurrent neural networks, long
short-term memory

Abstract

The importance of time: Modelling network intrusions

with long short-term memory recurrent neural networks

Ralf Colmar Staudemeyer
PhD thesis, Department of Computer Science
University of the Western Cape

We claim that modelling network tra�c as a time series with a
supervised learning approach, using known genuine and malicious
behaviour, improves intrusion detection. To substantiate this,
we trained long short-term memory (LSTM) recurrent neural
networks with the training data provided by the DARPA / KDD
Cup '99 challenge. After preprocessing all features to improve
information gain, we applied a number of intuitive steps to extract
salient features, which resulted in the creation of a number of
minimal feature sets that could be used for detecting attack
classes. The preprocessed KDD Cup '99 data was then used
to test the performance of �ve very common and well-known
classi�ers: Decision trees, naïve Bayes, Bayesian networks, feed-
forward neural networks, and support vector machines. Our
results show a performance comparable to the winning entries
of the KDD Cup '99 challenge. Finally, we applied the LSTM
recurrent neural network classi�er to the preprocessed data using
the minimal feature sets. Our results show that the LSTM classi�er
provides superior performance in comparison to other strong static
classi�ers trained. This is due to the fact that LSTM learns to
look back in time and correlate consecutive connection records.
For the �rst time ever, we have demonstrated the usefulness of
LSTM networks to intrusion detection.

Declaration

I declare that The importance of time: Modelling network
intrusions with long short-term memory recurrent neural networks
is my own work, that it has not been submitted for any degree
or examination in any other university, and that all the sources
I have used or quoted have been indicated and acknowledged by
complete references.

Ralf Colmar Staudemeyer

May 2012

Contents

1 Introduction 1

1.1 Motivation . 4

1.2 Premises . 4

1.3 Research Questions . 5

1.4 Technical Objectives . 6

1.5 Research Methodology . 6

1.6 Thesis Contributions . 6

1.7 Thesis Overview . 11

2 Network Intrusion Detection 13

2.1 Introduction . 13

2.2 Phases of Compromise . 15

2.3 Vulnerabilities and Threats . 17

2.3.1 Denial-of-Service . 20

2.3.2 System Scanning . 20

2.3.3 System Penetration . 20

2.4 Data Sources . 21

2.4.1 Host Intrusion Detection 21

2.4.2 Network Intrusion Detection 22

2.5 Detection Techniques . 23

2.5.1 Signature Detection . 23

2.5.2 Stateful Protocol Analysis 24

2.5.3 Anomaly Detection . 24

2.6 Machine Learning Techniques 25

2.7 Event Correlation and Report 29

2.8 Conclusions . 30

3 Data Mining Methods 31

3.1 Introduction . 32

3.2 Decision Trees . 33

3.3 Bayesian Classi�cation . 36

3.3.1 Naïve Bayes . 37

3.3.2 Bayesian Networks . 38

3.4 Backpropagation Neural Networks 40

3.4.1 The Perceptron . 40

3.4.2 Linear Separability . 41

x Contents

3.4.3 The Perceptron and Delta Learning Rule 42

3.4.4 The Sigmoid Threshold Unit 44

3.4.5 Feed-Forward Networks and Backpropagation 44

3.5 Support Vector Machines . 48

3.5.1 The Maximum Marginal Hyperplane 48

3.5.2 The Soft-Margin Method 51

3.5.3 Kernel Functions . 52

3.5.4 The Kernel Trick . 52

3.6 Recurrent Neural Networks . 53

3.6.1 Basic Architecture . 53

3.6.2 Backpropagation Through Time 56

3.6.3 Real-Time Recurrent Learning 59

3.6.4 The Vanishing Error Problem 61

3.7 LSTM Recurrent Neural Networks 63

3.7.1 Constant Error Carousel 63

3.7.2 Memory Cells . 64

3.7.3 Memory Blocks . 64

3.7.4 The Forward Pass . 65

3.7.5 Forget Gates . 67

3.7.6 Backward Pass . 69

3.7.7 Peephole Connections 73

3.8 Conclusions . 75

4 Extracting Salient Features for IDS 77

4.1 Introduction . 78

4.2 Performance Metrics . 80

4.2.1 Measuring IDS Performance 80

4.2.2 Simple Performance Measures 82

4.2.3 The Mean Squared Error 83

4.2.4 ROC Analysis . 84

4.2.5 Comparison of Methods 86

4.3 Attribute Search Strategies . 87

4.3.1 Forward Selection and Backward Elimination 89

4.3.2 Information Gain and Decision Trees 89

4.3.3 Domain Knowledge . 90

4.4 DARPA and KDD Cup '99 Datasets 90

4.5 Extracting Salient Features 95

4.5.1 Custom Data Preparation and Preprocessing 97

4.5.2 Visualisation of Class Distributions 98

4.5.3 Feature Extraction using Decision Tree Pruning 101

Contents xi

4.6 Minimal Sets for All Attacks 104

4.6.1 The 11 Feature Minimal Set 105

4.6.2 The 8 and 4 Feature Minimal Sets 105

4.7 Minimal Sets for Individual Attacks 106

4.7.1 Detecting Network Probes 109

4.7.2 Detecting `dos' Attacks 110

4.7.3 Detecting `r2l' Attacks 112

4.7.4 Detecting `u2r' Attacks 112

4.8 Conclusions . 114

5 Evaluating Static Classifiers for IDS 117

5.1 Introduction . 117

5.2 Criticism of the DARPA Datasets 118

5.3 Results of the KDD Cup '99 Competition 119

5.4 Other Results . 121

5.5 Classi�er Performance Metrics 125

5.6 Performance Analysis Using All Features 126

5.7 Comparison of Feature Sets 128

5.7.1 Two-Class Categorisation 128

5.7.2 Multi-Class Categorisation 129

5.8 Performance Analysis with Minimal Feature Sets 132

5.8.1 Multi-Class Categorisation 132

5.8.2 Individual Attack Classes 136

5.9 Discussion . 139

5.10 Conclusions . 144

6 Modelling IDS as a Time Series 147

6.1 Introduction . 147

6.2 Experiment Design . 148

6.2.1 Experimental Parameters 148

6.2.2 Network Topology . 151

6.2.3 Parallelisation . 152

6.3 Experiments . 156

6.4 Performance Analysis Using All Features 158

6.4.1 Multi-Class Categorisation 159

6.4.2 Individual Attack Classes 165

6.5 Performance Analysis with Minimal Feature Sets 167

6.5.1 Multi-Class Categorisation 168

6.5.2 Individual Attack Classes 169

6.6 Classi�er Performance Comparison 171

xii Contents

6.7 Conclusions . 172

7 Conclusions 175

A Tables and Figures 181

A.1 KDD Cup '99 Features . 181

A.2 KDD Cup '99 Tra�c Types 181

A.3 Distribution Histograms . 181

A.4 Scatter Plots . 181

A.5 LSTM Neural Network . 181

Bibliography 193

List of Abbreviations 207

List of Tables

4.1 The confusion matrix . 82

4.2 The cost matrix . 82

4.3 Attacks and tra�c types . 91

4.4 Varying distributions in the KDD Cup '99 datasets 95

5.1 Results of the C5 decision tree classi�er 120

5.2 Results of the decision forest classi�er 120

5.3 Results of a rule-based classi�er 121

5.4 Results of the 1-nearest neighbour classi�er 121

5.5 The cost matrix provided by the KDD Cup '99 challenge . . . 126

5.6 Performance comparison of evaluated classi�ers (11, 8 and 4) . 127

5.7 Results training with 10,422 records set (41, 17, 12 and 11) . . 129

5.8 Results training with 10,422 records set (41, 11 and 11p) . . . 131

5.9 Results of the SVM classi�er (11) 132

5.10 Performance comparison of evaluated classi�ers (11, 8 and 4) . 135

5.11 Results for detecting network probes (39p, 14 and 6) 138

5.12 Results for detecting `dos' attacks (39p, 11p, 5p) 140

5.13 Results for detecting `r2l' attacks (39p, 18, 14 and 6) 142

5.14 Results of detecting `u2r' attacks (39p, 8p, 5p) 144

6.1 Performance comparison of compiler speci�c optimisations . . 156

6.2 Overview of all LSTM experiments performed 157

6.3 Summary of test results for LSTM (all features) 165

6.4 Results of LSTM network (all features) 166

6.5 Summary of test results for LSTM (all features) 167

6.6 Summary of test results for LSTM (8) 168

6.7 Results of LSTM network (11) 169

6.8 Results of LSTM network (8) 170

6.9 Results of LSTM network (4) 170

6.10 Summary of test results for LSTM (minimal features) 171

6.11 Results for detecting `dos' attacks (39p, 5p) 172

6.12 Results for detecting network probes (39p, 6p) 173

6.13 Results for detecting `r2l' attacks (39p, 14p, 6p) 173

6.14 Results of detecting `u2r' attacks (39p, 5p) 174

A.1 The 41 features provided by the KDD Cup '99 datasets 182

A.2 Tra�c types and their occurrences in the KDD Cup '99 dataset.183

List of Figures

2.1 The �ve phases of compromise 17

3.1 A decision tree . 35

3.2 A Bayesian belief network . 39

3.3 A perceptron . 42

3.4 Linear separability . 43

3.5 A sigmoid threshold unit . 45

3.6 A multilayer feed-forward neural network 46

3.7 The maximum margin hyperplane 50

3.8 SVM kernel functions . 52

3.9 A feed-forward neural network 54

3.10 An Elman neural network . 54

3.11 A partial recurrent neural network 55

3.12 A fully recurrent neural network 55

3.13 A fully recurrent neural network with a two-neuron layer . . . 56

3.14 A feed-forward neural network 57

3.15 A standard LSTM memory cell with a recurrent self-connection 65

3.16 A standard LSTM memory cell with forget gate 75

4.1 The crossover error rate . 81

4.2 The feature selection process 88

4.3 Information gain (original vs. preprocessed KDD Cup '99 data) 103

4.4 Performance degradation (4 minimal feature dataset) 106

4.5 Information gain (`probe' and `dos') 107

4.6 Information gain (`r2l' and `u2r') 108

4.7 A `6-1' histogram (`probe') . 110

4.8 A `5-1' histogram (`dos') . 111

4.9 A `6-1' histogram (`r2l') . 113

4.10 A `5-1' histogram (`u2r') . 114

5.1 A multi-classi�er model . 122

5.2 Classi�er performance comparison (cost) 133

5.3 Classi�er performance comparison (misclassi�cations) 134

5.4 ROC curves of well-performing neural networks (`probe') . . . 137

5.5 ROC curves of well-performing neural networks (`dos') 139

5.6 ROC curves of well-performing neural networks (`r2l') 141

5.7 ROC curves of well-performing neural networks (`u2r') 143

xvi List of Figures

6.1 Attack detection rates for all tra�c types 150

6.2 An LSTM network structure comparison 153

6.3 ROC curves of well-performing networks (`normal') 160

6.4 ROC curves of well-performing networks (`probe') 161

6.5 ROC curves of well-performing networks (`dos') 162

6.6 ROC curves of well-performing networks (`r2l') 163

6.7 ROC curves of well-performing networks (`u2r') 164

A.1 Distribution histograms of all features (full dataset) 184

A.2 Distribution histograms of all features (`10%' dataset) 185

A.3 Distribution histograms of all features (10,422 dataset) 186

A.4 Scatter plot matrix of 11-feature set(10,422 dataset) 187

A.5 Scatter plot matrix of 14-feature set(`probe', 10,422 dataset) . 188

A.6 Scatter plot matrix of 11-feature set (`dos', 10,422 dataset) . . 189

A.7 Scatter plot matrix of 14-features set (`r2l', 10,422 dataset) . . 190

A.8 Scatter plot matrix of 8-feature set (`u2r', 10,422 dataset) . . . 191

A.9 An LSTM neural network with two memory blocks 192

Chapter 1

Introduction

Contents

1.1 Motivation . 4

1.2 Premises . 4

1.3 Research Questions . 5

1.4 Technical Objectives . 6

1.5 Research Methodology 6

1.6 Thesis Contributions 6

1.7 Thesis Overview . 11

In modern society, increasingly powerful technologies have encouraged

widespread dependency on information and communication technology

(ICT), which, in turn, has created a strong requirement for dependable

ICT functionalities. At the same time, however, there are increasingly

sophisticated and diverse threats to modern ICT systems; this calls for novel

security mechanisms. Intrusion detection aims at identifying various kinds of

malicious activities, and is now a strategic task of the highest importance in

safeguarding computer networks and systems.

While traditional approaches to intrusion detection systems (IDSs)

([Lunt 1988], [Lunt 1993], [Mukherjee et al. 1994], and [McHugh 2001])

have proven to be e�cient at detecting intrusions based on well-known

parameters, they are completely ine�ective in cases involving novel intrusions

([Kumar 1995], [Bejtlich 2004], and [Scarfone & Mell 2007]).

For example, at the time of writing, one major threat against the ICT

systems is the stuxnet worm. Stuxnet came to light in June 2010, and was

analysed in detail by [Falliere et al. 2010]. Circumventing classic intrusion

detection, using an arsenal of previously unidenti�ed vulnerabilities, it is

capable of sabotaging industrial control systems. The risks involved are quite

2 Chapter 1. Introduction

plain to see, considering that some of these a�ected control systems are used

to operate motors in systems responsible for the enrichment of uranium in

atomic plants.

Current commercial products o�ering anomaly detection are solely

threshold-based, or make use of statistical measures ([Garcia-Teodoro

et al. 2009]). These methods can model only relatively simple patterns,

expressed in counts or distributions. Similar to signature-based approaches,

this still limits their application to the detection of well-known and precisely

de�ned attacks.

One potential solution to this limitation could be self-learning systems

([Mitchell 1997] and [Han & Kamber 2006]), which are capable of detecting

previously unknown threats. This is due to their ability to di�erentiate

between `normal' and `anomalous' tra�c, by learning from monitored-network

and host data. More precisely, machine learning methods can learn complex

system behaviour. And by learning whole classes of normal tra�c and attacks,

trained classi�ers have the potential to detect irregularities and previously

unseen attacks. In addition, machine learning methods promise to provide a

solution that can detect possible attacks in real-time, so that countermeasures

can be taken in a timely manner.

At this time, because the implementation of machine learning methods in

intrusion detection is in the very early stages of development, its practical

applications are still quite limited ([Paxson 1999], [Staniford et al. 2002],

[Prelude 2011]). In addition, there are a number of signi�cant issues that

need to be resolved ([Liao & Vemuri 2006]).

For instance, trained classi�ers still su�er from a high number of

misclassi�cations because intrusive activity is too rare [Axelsson 2000a]).

Furthermore, powerful classi�ers require signi�cant resources for training

and optimisation ([Lee et al. 2002]), which is still unrealistic for commercial

deployment. This is why feature selection is a key element in advancing the

use of machine learning methods in intrusion detection ([Lee & Stolfo 2000]).

We also need to ensure that the analysis of network data is not becoming

overwhelmingly complex, in order to prevent an IDS unreasonably restraining

the exchange of data between parties. Nowadays, the amount of data being

transmitted via computer networks is huge. Any attempt to perform real-time

3

tra�c analysis on continuous streams of data necessitates a careful selection

of information to be extracted. Communication sessions between hosts can

be characterised by so-called connection records ([Lee & Stolfo 2000]).

Every connection record contains a number of features uniquely identifying

the connection. Some features, such as the duration of the connection,

bytes transferred in each direction, and the TCP/UDP ports used for

communication, can be easily extracted. More complex features can,

using increased bandwidth, become too expensive resource-wise to obtain

([Lee et al. 2002]). These features require packet inspection in order to

extract information from the application layer. Other features, such as the

number of users logged in, require information only available locally on the

communicating systems.

Now, the challenge is to build intrusion detection systems based on

arti�cial intelligence; systems that require a minimal input extracted with

reasonable complexity from network tra�c data, and with the highest possible

e�ectiveness with regard to detecting novel threats to computer systems.

In this work, we investigate the application to network intrusion detection

of a number of static machine learning methods, as well as that of long short-

term memory (LSTM), a powerful dynamic classi�er introduced by [Hochreiter

& Schmidhuber 1996] and [Hochreiter & Schmidhuber 1997], and enhanced

by [Gers et al. 1999] and [Gers et al. 2002]. In investigating the possibilities of

data mining, we were especially interested in the e�ects of a reduced feature

set on the network intrusion detection performance, using strong machine

learning classi�ers.

As representatives of static machine learning methods, we applied decision

trees as introduced by [Quinlan 1986] and [Quinlan 1993], Bayesian learning

as described in [John & Langley 1995] and [Heckerman et al. 1995], the

neural network backpropagation algorithm as invented by [Werbos 1990] and

[Rumelhart et al. 1994]), and support vector machines as developed by [Boser

et al. 1992] and [Cortes & Vapnik 1995]) to the publicly available DARPA /

KDD Cup '99 dataset ([Hettich & Bay 1999] and [DARPA 2011]). The KDD

Cup '99 dataset consists of connection records with 41 features whose relevance

for intrusion detection are not clear. This work documents experiments with

di�erent subsets of these features.

4 Chapter 1. Introduction

1.1 Motivation

Computer network attackers leave faint traces of their presence in network

tra�c. By carefully analysing this tra�c, it is possible to trace malicious

behaviour and identify attacks. Analysis can be done by scanning for (1)

signatures of known attacks, or (2) abnormal tra�c trends ([Debar et al. 1999],

[Debar et al. 2000], [Axelsson 2000b]). Today, most Intrusion Detection

Systems (IDSs) are still signature-based but products using anomaly-detection

are starting to be more common ([Garcia-Teodoro et al. 2009]). Since systems

using signature detection are only able to model attacks that have been carried

out before and require frequent updates of their signatures. Anomaly-based

intrusion detection systems are able to detect unknown attacks, but still

su�er from high false alarm rates. For this reason, they require continuous

supervision by highly quali�ed experts in order to successfully distinguish

between false alarms and real attacks ([Scarfone & Mell 2007]).

This thesis is aimed at the development of intrusion detection systems

that can detect known, as well as new attacks, with a high detection rate.

Ideally, these systems should have a false alarm rate of 0%. But unfortunately,

continuous infrastructure development of faster networks and faster computers

make it increasingly di�cult to observe huge amounts of network data in

real-time. Furthermore, the continuous invention of new attacks, the use

of variants of old attacks, and the exploitation of security �aws in network

protocols and software by hackers and security experts, make it necessary to

scan for malicious tra�c with unknown patterns. This can only be done by

using anomaly-based intrusion detection systems.

1.2 Premises

We assume that usage patterns can be learned. This will enable us to detect

malicious behaviour buried deep in legitimate tra�c. New machine learning

methods look promising for detecting attacks with a very low pro�le over long

periods of time. In this thesis, we will apply and compare the detection and

failure rates of a variety of traditional machine learning methods to those of

LSTM, a recurrent neural network architecture. According to our hypothesis,

1.3. Research Questions 5

LSTM recurrent neural networks will outperform other machine learning

methods previously used with intrusion detection data. This is because LSTM

is specialised in time series learning and can keep information over very long

periods of time.

This project is based on the following three premises:

1. Intruders will try to masquerade as genuine users, but their behavioural

patterns will di�er in some important aspects due to their speci�c

objective; i.e. unauthorised access to resources such as networks,

computers, data, etc.

2. We assume that usage patterns can be learned; however, static-pattern

recognition for intrusion detection has had very limited success so far.

3. Intrusion patterns are buried deep in legitimate tra�c with a very low

pro�le over long time periods.

1.3 Research Questions

The central research question is whether modelling observed network tra�c as

a time series with known genuine and malicious behaviour improves intrusion

detection.

This question implies the following sub-questions:

1. What are the salient features that need to be extracted from the data

for modelling?

2. Can we model tra�c containing thousands of records?

3. Can we model time series for which comparatively few examples exist,

i.e. when the overwhelming majority of user patterns are genuine?

4. Can the modelling technique be generalised to detect signatures of

variants of intrusions, even though no such data was seen in the training

set? What performance can we achieve?

5. Can information from higher layers signi�cantly improve our intrusion

detection approach?

6 Chapter 1. Introduction

1.4 Technical Objectives

In order to answer these questions, we need to achieve the following technical

objectives:

1. Identify features that are useful for discrimination.

2. Construct a model that allows discrimination between genuine and

malicious user patterns from examples.

3. Use information from higher layers with time series data to measure the

possible improvement of the intrusion detection rate and analyse the

trade-o� between cost and bene�t.

1.5 Research Methodology

We arranged our research into the following steps:

1. Review related literature and studies.

2. Extract important features from the KDD Cup '99 intrusion detection

dataset.

3. Train static machine learning methods, such as decision trees, Bayesian

learning and neural networks, on the training sets and measure their

performance.

4. Implement and test LSTM.

(a) Train LSTM runs on training sets and measure performance.

(b) Compare performance of static methods.

5. Test LSTM runs on variants of attacks for which LSTM was not trained.

1.6 Thesis Contributions

The major contributions presented in this thesis are as follows:

1.6. Thesis Contributions 7

1. We present a number of data preprocessing steps which signi�cantly

improve the performance of machine learning classi�ers on the KDD

Cup '99 dataset in comparison to those directly using the original

41 attributes. After preprocessing, the majority of features show

approximately 20% improved information gain for all tra�c classes

(see Figure 4.3 on Page 103, Figure 4.5 on Page 107, and Figure 4.6

on Page 108). Using the preprocessed features, the C4.5 decision

tree classi�er shows a comparable performance to the C5 decision tree

classi�er, which was the winning entry at the KDD Cup '99 challenge.

2. We present a salient feature subset derivation technique. Our custom

feature selection algorithm is based on C4.5 decision tree pruning,

combined with a biased backward elimination and forward selection

approach. This process is supported by using heuristic domain

knowledge to favour features that can easily be extracted from network

tra�c. Avoiding an exhaustive search through the whole feature space,

this technique proves very e�ective at �nding minimal feature sets with

as few as 4�8 features.

3. We present extracted minimal feature sets for detecting all attacks

and four individual classes of attacks (denial-of-service, network

probe, remote-to-local and user-to-root) in two-class and multi-class

classi�cation. We present minimal feature sets with 11, 8 and 4 features

for detecting all attacks with one trained classi�er and minimal feature

sets with 4�6 features for detecting individual attack classes. The C4.5

classi�er shows, on all sets, a similar performance to using all features.

Our minimal set for detecting all attacks consists of only 4 features.

For detecting individual attacks, we present a 6-feature set for the

detection network probes with 98.27% accuracy and 0.004 false positive

rate, a 5-feature set for the detection of denial-of-service attacks with

98.11% accuracy and 0.004 false positive rate, a 6-feature set for the

detection of remove-to-local attacks with 79.45% accuracy and <0.001

false positive rate, and a 5-feature set for the detection of user-to-root

attacks with 99.96% accuracy and <0.001 false positive rate.

8 Chapter 1. Introduction

These sets are, by far, the smallest feature sets extracted on the given

KDD Cup '99 feature dataset found in literature. In `X-1' histograms, we

show that, by using the C4.5 classi�er, any further removal of remaining

features leads to a remarkable degradation in performance in terms of

incorrectly classi�ed instances (see Figure 4.7 on Page 110, Figure 4.8

on Page 111, Figure 4.9 on Page 113, and Figure 4.10 on Page 114).

4. We present a detailed performance evaluation of �ve static classi�ers

on our preprocessed KDD Cup '99 dataset. Speci�cally, we evaluate

decision trees, naïve Bayes, Bayesian networks, feed-forward neural

networks and support vector machines. We compare the performance

of these classi�ers on all features and on the extracted minimal feature

sets (see Table 5.6 on Page 127 and Table 5.10 on Page 135). We observe

classi�cation performance on all attacks and on individual attack classes

(see Table 5.11 on Page 138, Table 5.12 on Page 140, Table 5.13 on

Page 142, and Table 5.14 on Page 144).

The results achieved are comparable to the best-performing entries of the

KDD Cup '99 challenge, with the exception of the naïve Bayes classi�er.

We show that all tested classi�ers bene�t from preprocessing, and,

observing the static classi�er performance using the minimal feature

sets and training on all attacks, we show that the performance of

the C4.5 decision tree and the feed-forward neural network classi�er

is nearly una�ected by excessive feature reduction in terms of costs and

incorrectly classi�ed instances. Again, in terms of accuracy and costs,

using these minimal feature sets, the performance is comparable to using

all the features. However, we note that using 4 minimal features, only

the decision tree classi�er excels in performance. We suggest optional 8

and 11-feature minimal sets where all static classi�ers show comparable

performance.

The performance of the static classi�ers trained on individual attack

classes show the following results in terms of accuracy, cost and false

positive rate. For network probes trained with 6 minimal features, all

classi�ers show good performance. The best-performing classi�ers are

the decision tree with 98.52% accuracy and 0.004 false positive rate,

1.6. Thesis Contributions 9

and the neural network classi�er with 98.81% accuracy and 0.005 false

positive rate, with all other classi�ers closely following. For denial-

of-service attacks trained on 5 minimal features, the best-performing

classi�ers are again the decision tree with 98.11% accuracy and 0.003

false positive rate, and the neural network with 98.12% accuracy and

0.004 false positive rate.

The results for remote-to-local attacks trained on the 6-feature minimal

set show a noticeable loss of performance for most classi�ers. Here,

we suggest sets with 14 and 18 features, where all classi�ers show a

similar performance to the performance achieved using the full feature

set. The best-performing classi�er on the 14-feature set is the decision

tree classi�er with 80.62% accuracy and <0.001 false positive rate. On

detecting user-to-root attacks, all classi�ers show a similar performance

or improve using the 5-feature set. The best-performing classi�er here

is the decision tree classi�er with 99.96% accuracy and <0.001 false

positive rate.

A more detailed analysis of the neural network classi�er performance

on individual attack classes via AUC (area under ROC-curve) reveals

that for most attacks this classi�er can fully maintain performance after

extensive feature reduction. The AUC values for the classi�cation of

the four attack classes in the test data remain or improve after feature

reduction from 0.997 to 0.997 using all and 6 features (network probes),

from 0.998 to 0.979 (denial-of-service attacks using all and 5 features),

from 0.601 to 0.618 (remote-to-local attacks using all and 18 features),

and from 0.707 to 0.984 (user-to-root attacks using all and 5 features)

(see Figure 5.4 on Page 137, Figure 5.5 on Page 139, Figure 5.6 on

Page 141, and Figure 5.7 on Page 143).

5. We present a performance evaluation of the strong dynamic classi�er

long short-term memory recurrent neural networks on our preprocessed

KDD Cup '99 dataset. Again, we compare the performance of the

classi�er on all features and the minimal feature sets, and we observe

classi�cation on all attacks and individual attack classes.

LSTM shows a better performance than all tested static classi�ers.

10 Chapter 1. Introduction

Using all features and training on all attacks, LSTM shows the best

results achieved. These results clearly outperform the results of all

static classi�ers, including the winning results of the KDD Cup '99

challenge. After feature reduction using 4 minimal features, LSTM still

shows exceptional results.

The classi�er comparison of all tested static and dynamic classi�ers

on detecting individual attacks shows that LSTM again outperforms

all static classi�ers. For denial-of-service attacks using our 5-feature

minimal set, LSTM shows the best performance achieved with 99.78%

accuracy, 0.0044 costs and 0.004 false positive rate. This also holds for

network probes using our 6-feature set with 99.35% accuracy, 0.0065

costs and 0.004 false positive rate. Observing remote-to-local attacks,

the best results are shown using a the 14 feature subset with 80.41%

accuracy, 0.5568 costs and 0.039 false positive rate, although LSTM still

outperforms the other neural network-based classi�ers (support vector

machine and feed-forward neural network) using the 6-feature minimal

set. Detecting user-to-root attacks, the performance of LSTM is still

acceptable with 99.93% accuracy, 0.0026 costs and <0.001 false positive

rate, and on the same level as the best-performing decision tree classi�er.

Summaries of test results for training all classi�ers with individual attack

classes using the minimal features is shown for denial-of-service attacks

in Table 6.11 on Page 172, for network probes in Table 6.12 on Page 173,

for `r2l' attacks in Table 6.13 on Page 173) and for `u2r' attacks in

Table 6.14 on Page 174.

The maximum AUC values achieved for the classi�cation of the four

attack classes in the test data using all features and using the minimal

feature sets are from 0.997 to 0.999 (network probes using all and

5 features), from 0.997 to 0.998 (denial-of-service attacks all and 6

features), from 0.877 to 0.883 (remote-to-local attacks using all and 14

features), and from 0.974 to 0.992 (user-to-root attacks using all and 5

features).

The strength of the LSTM classi�er shows through when it is trained

on high-frequency attacks that generate high volumes of consecutive

1.7. Thesis Overview 11

records, such as denial-of-service attacks and network probes. On low-

frequency attacks, such as remote-to-local and user-to-root attacks, the

bene�t of LSTM vanishes. We have demonstrated, for the �rst time

ever, the successful application of LSTM recurrent neural networks to

intrusion detection systems.

The minor contributions are:

1. a detailed analysis of the KDD Cup '99 dataset,

2. an extraction of custom training and test sets for feature extraction with

improved attack distributions for rare attacks, and

3. a custom implementation of the long short-term memory classi�er with

a focus on large datasets and parallel processing, which we used for our

experiments.

1.7 Thesis Overview

In Chapter 2, the basic concepts of network intrusion detection are introduced.

We explain the steps an attacker carries out to compromise a system and cover

the di�erent main types of threats. Then we present the two di�erent kinds

of intrusion detection: Host and network intrusion detection. We explain the

applied techniques for detecting intrusions and how to deal with classi�cation

errors. Chapter 3 covers di�erent static and dynamic data mining methods,

namely, decision trees, Bayesian learning, neural networks, support vector

machine classi�ers, recurrent neural networks and, speci�cally, long short-

term memory recurrent neural networks.

In Chapter 4, we analyse the KDD Cup '99 datasets and their potential for

feature reduction. First, we provide some additional background knowledge

by presenting di�erent performance metrics and attribute search strategies

we successfully applied. Then, we present the data preprocessing steps and

the feature selection process we developed for preparing the KDD Cup '99

data. Here, we introduce distribution histograms, scatter plots, information

gain and decision tree pruning as supportive feature reduction tools. Using

12 Chapter 1. Introduction

our custom feature selection process, we show how we can signi�cantly reduce

the number features in the dataset to a few salient features. We conclude

by presenting minimal sets with 4�8 salient features for two-class and multi-

class categorisation for detecting intrusions, as well as for the detection of

individual attack classes; the performance using a static classi�er compares

favourably to the performance using all features available.

We start Chapter 5 with a presentation of a literature overview,

summarising the results of a variety of learning algorithms, which were

successfully applied to these datasets. Then, we test the data with the

�ve static classi�ers introduced in Chapter 3 and compare the results to the

winning entries of the KDD Cup '99 challenge. Next, we apply the classi�ers

using the minimal feature sets and compare the experimental results.

In Chapter 6, we present our results of applying the dynamic LSTM

recurrent neural network classi�er to the KDD Cup '99 data. Then, we present

the results of experiments using all features and using our minimal feature sets,

and compare these to the results using the static classi�ers. We show that

the LSTM classi�er outperforms the static classi�ers for most of the tested

tra�c classi�cation tasks. Furthermore, preprocessing and our custom feature

selection process represents a signi�cantly improved classi�cation performance

of all classi�ers.

We conclude, in Chapter 7, with a summary of our results and suggestions

for future directions.

Chapter 2

Network Intrusion Detection

Contents

2.1 Introduction . 13

2.2 Phases of Compromise 15

2.3 Vulnerabilities and Threats 17

2.3.1 Denial-of-Service . 20

2.3.2 System Scanning . 20

2.3.3 System Penetration . 20

2.4 Data Sources . 21

2.4.1 Host Intrusion Detection 21

2.4.2 Network Intrusion Detection 22

2.5 Detection Techniques 23

2.5.1 Signature Detection 23

2.5.2 Stateful Protocol Analysis 24

2.5.3 Anomaly Detection . 24

2.6 Machine Learning Techniques 25

2.7 Event Correlation and Report 29

2.8 Conclusions . 30

2.1 Introduction

Intrusion detection systems (IDSs) are concerned with the automatic detection

of manual or machine attacks on a computing system ([Axelsson 2000b]). In

this chapter, we cover the most important background information in this �eld

of research relevant to this thesis. We open with a brief summary of earlier

work.

14 Chapter 2. Network Intrusion Detection

The �rst generation of intrusion detection systems consisted of

administrators sitting in front of their monitors, manually observing network

and system activities, in an attempt to identify policy violations or other

inappropriate use of the system. However, with the increasing amount of

information collected, manual observation of audit logs became an unfeasible

task ([Kemmerer & Vigna 2002]).

E�orts to automate this process reach back to concepts presented

by [Anderson 1980] and [Denning 1987], and early implementations were

developed during the late 1980s (see [Smaha 1988], [Jagannathan et al. 1993],

and [Porras & Neumann 1997]). The history of intrusion detection is

summarised in surveys at di�erent points in time by [Lunt 1988], [Lunt 1993],

[Mukherjee et al. 1994], and [McHugh 2001]. The related taxonomy of

di�erent approaches was devised by [Debar et al. 1999], [Debar et al. 2000]

and [Axelsson 2000b].

Since intrusion detection proved to be a computationally intensive task,

these early systems worked with a time delay so as to avoid interfering

with user activities [Kemmerer & Vigna 2002]. As a result, these systems

showed a signi�cant delay between intrusion and triggered alarm. During the

early 1990s, intrusion detection systems tried to address the issue of timely

response and were developed with real-time analysis in mind. Well-known

examples of successful open-source IDSs are Tripwire ([Kim & Spa�ord 1994],

[Tripwire 2011]), Bro ([Paxson 1999], [Bro 2011]), Snort ([Roesch 1999],

[Snort 2011]), Samhain ([Wotring et al. 2005], [Samhain 2011]), OSSEC ([Hay

et al. 2008], [OSSEC 2011]) and Prelude ([Prelude 2011]).

Furthermore, excellent introductions to the �elds of information assurance,

internet security and intrusion detection are provided by [Shields 2006],

[Cheswick et al. 2003] and [Stallings 2006]. [Northcutt & Novak 2003],

[Bejtlich 2004], [Northcutt et al. 2005] and [Bejtlich 2006] provide more

extensive information and hands-on tutorials in the �eld of network intrusion

detection and tra�c analysis.

In the remainder of this chapter, we �rst cover the di�erent stages an

attacker goes through when trying to compromise a system. Subsequently, we

outline exploitable vulnerabilities of a typical computer system and classify

the resulting possible threats against the system. Then, we describe di�erent

2.2. Phases of Compromise 15

kinds of intrusion detection systems according to data sources and detection

techniques. Next, we present a review of previous work applying machine

learning methods to intrusion detection. Finally, we brie�y touch on the

basics of IDS response in terms of event correlation and report.

2.2 Phases of Compromise

Intrusions can be initiated by unauthorised users de�ned as `attackers'. An

attacker can try to access a machine remotely via the Internet or to render

a service remotely unusable. A local attacker with access to a local machine

might try to gain additional privileges by misusing their existing credentials.

If we want to detect intrusions, we need to learn about the procedure

required in order to successfully attack a system. In most cases, attacks

can be split into �ve phases: reconnaissance, exploitation, reinforcement,

consolidation, and pillage. This outsider attack timeline is suggested by

[Bejtlich 2004]. During the �rst three phases, there is a fair probability that

the activities of the attacker will be detected. Once the attacker gains full

control over the target system, however, it becomes increasingly di�cult to

di�erentiate between legitimate and illegitimate activity.

Most attacks start with the validation of connectivity. Reconnaissance

involves the identi�cation of reachable hosts and services, and the versions

of operating systems and applications running. During this �rst phase,

an attacker uses tools to collect information about potential targets. This

includes the scanning of reachable IP addresses and open TCP/UDP ports,

and the characterising of the target by other active and passive means (often

referred to as `�ngerprinting'). From this information, the attacker can draw

conclusions about the potential vulnerabilities of the target system. The list of

potential vulnerabilities is then used to develop a structured plan for attacking

the target in the most unobtrusive way possible. Two well-known tools for

network and vulnerability scanning are nmap ([Lyon 2009], [nmap 2011]) and

Nessus/OpenVAS ([Nessus 2011], [OpenVAS 2011]).

During the exploitation phase, an attacker tries to exploit a service in order

to gain access to the target machine. This can be done by either abusing,

subverting, or breaching the service. Abuse can involve `dictionary' attacks

16 Chapter 2. Network Intrusion Detection

or the use of stolen passwords, whereby the attacker gains access using a

legitimate route. In subversion, the attacker causes the service to perform in

a way not anticipated by the developers by using such techniques as SQL-

injection ([Anley 2002]).

After a successful break-in, the attacker proceeds to take advantage of

the privileges gained. During reinforcement, the typical steps of the attacker

are to camou�age activity and to install additional tools and services. This

might include removing logs, adding new user accounts, or disguising �les and

processes. It is common for attackers to install some kind of remote access

service, which bypasses normal authentication, in order to facilitate access to

the system. This is called a `backdoor' and ensures that the attacker need

not rely on the original exploit. In some cases, the attacker additionally �xes

the original security leaks, which prevents other attackers from owning the

system.

The escalation of privileges is also part of the reinforcement phase. The

attacker works his way from the misused user account towards gaining full

system access. To this end, the attacker might exploit applications accessible

from the available user account. The Metasploit framework ([Maynor &

Mookhey 2007], [Metasploit 2011]) is an example of a powerful tool for crafting

and executing exploit code. It o�ers various options for post-compromise

exploitation, such as the creation of backdoors and multiple-stage attacks.

During the consolidation phase, the attacker has complete control over

the owned system and communicates via the installed backdoor. In theory,

the backdoor could be some form of listening service to which the attacker

connects. In most cases, the backdoor itself connects in an outbound direction

to the attacker using a common service; for example, via an IRC channel. This

prevents �rewalls and intrusion detection systems from being easily triggered

by the means of an attacker. It is very common for backdoors to use covert

channels, where the backdoor communication then appears to be normal

tra�c.

The phase in which an attacker executes his �nal plan is called pillage.

Possible malicious actions include theft of data and CPU time, and

impersonation. By impersonation, the attacker can broaden the attack to

include other internal or external hosts. Having gained root privileges, the

2.3. Vulnerabilities and Threats 17

gain root access

− local exploit

− rootkit

successful break−in successful attack

EXPLOITATION

− hosts

− services

− OS versions

− application versions

− abuse,

− subversion or

− remove logs

− disguise files

− use backdoor − steal information

− damage asset

− compromise

malicious actions

− steal data

− install backdoor

− sniff network

RECONNAISSANCE REINFORCEMENT PILLAGE

− add accounts

 or processes

− communication

 via covert− breach

 services channel

CONSOLIDATION

identification

gain user access

block service

actions to compromise target

collect information

− (d)dos attack

− remote exploit

− guess password

− reachable IP addresses

− open TCP/UDP ports

− fingerprint target − sql injection − impersonation

− steal CPU time

organisation

Figure 2.1: The �ve phases of compromise�the outsider attack timeline. The
attacker starts by collecting information about potential targets. Then, he tries to
gain user access to the target machine. After a successful break-in, having gained
full control over the system, he installs additional tools and services. Finally, the
attacker can carry out malicious actions, such as compromising an organisation.

attacker can easily `sni�' and redirect network tra�c on a local network. This

can be achieved by exploiting well-known weaknesses in network protocols,

such as ARP and DNS. The relevant weaknesses are discussed in detail by

[Tripunitara & Dutta 1999] [Schuba & Spa�ord 1994]. The �ve phases of

compromise are shown in Figure 2.1.

2.3 Vulnerabilities and Threats

Humans make mistakes; computers are built and programmed by humans.

So, it is a fair assumption that computers also contain bugs in hardware and

software, which might be related to errors in design and/or implementation.

If this assumption holds, then the only questions remaining are how serious

these bugs are, and whether or not they can cause (direct or indirect) damage

18 Chapter 2. Network Intrusion Detection

to a�ected systems. A vulnerability is such a �aw, which can be used by an

attacker to force interaction with a computer system or network ([Bace &

Mell 2001]).

Computer systems have limited memory, disk space, processing power and

network bandwidth. Thus, an attacker could render a system unusable by

exhausting shared resources or forcing the system into unde�ned behaviour,

such as that triggered by division by zero errors. This can happen when the

system fails to validate the provided input, thereby enabling an attacker to

input invalid data into the system.

Typical errors that can lead to vulnerabilities are associated with access

validation, exception handling, and miscon�guration. An access validation

error is caused by faulty access control mechanisms, whereas exception

handling errors are related to the mishandling of an exceptional condition by

the system. The vulnerability caused by miscon�guration is not due to system

design, but rather how the user con�gured the system ([Bace & Mell 2001]).

The most common types of vulnerability are boundary condition errors. If

the system does not check for input length, an attacker can over�ow allocated

memory. This kind of error occurs during a bu�er over�ow attack. Bu�er

over�ows normally simply lead to erratic program behaviour, such as program

termination or wrong results. But by carefully crafting the data written to the

over�owed memory region, according to architecture, operating system and

memory region, the attacker can force the system to execute injected code

([Cowan et al. 2000]).

The dictionary of Common information security Vulnerabilities and

Exposures (CVE)[CVE 2012] de�nes a vulnerability as a state that allows

an attacker to:

• execute commands as another user;

• access data that is contrary to the speci�ed access restrictions for that

data;

• pose as another entity; or

• initiate a denial-of-service.

2.3. Vulnerabilities and Threats 19

It is clear that we can categorise threats, because computer systems can

become corrupted in di�erent ways. The three `pillars' of information security

are: con�dentiality, data integrity and availability. We need to consider

at least these three aspects when developing system security. Furthermore,

there are numerous additional factors, such as authenticity and accountability,

which are also important within speci�c environments ([Bishop 2004]).

Con�dentiality mainly addresses passive attacks that are based on

eavesdropping; a violation occurs whenever someone who is not authorised

to do so is able to extract con�dential information from a communication.

IDS systems have limited capability to detect eavesdropping, which cannot be

detected directly unless it involves alteration of data.

Attacks against the integrity of a system are generally active attacks.

During this kind of violation, an attacker changes a system state or data

without authorisation. This is especially problematic if altered messages

cannot be easily distinguished from unchanged messages.

The integrity attacks addressed by IDS systems are system scanning

activities (also called `probing') and system penetration. These attacks can

be launched either over a network or locally within a system.

Another type of attack is concerned with availability violation, which might

prevent an authorised user or machine from accessing a particular resource in a

legitimate manner. Denial-of-service attacks and distributed denial-of-service

attacks try to render a computer resource unavailable. IDS systems usually

also aim to detect these kinds of attack.

Summarising various approaches to classifying threats as proposed by

[Anderson 1980], [Denning 1987] and [Smaha 1988], we can de�ne an attack as

a set of actions that potentially compromises the con�dentiality, data integrity,

availability, or any kind of security policy of a resource.

In this work we use the categorisation scheme as suggested by the DARPA

Intrusion Detection Evaluation ([DARPA 2011]). Between 1998 and 2000,

the MIT Lincoln Laboratory created the DARPA Intrusion Detection Data

Sets ([Lippmann et al. 2000a] and [Lippmann et al. 2000b]). These datasets

contain a wide variety of di�erent attacks classi�ed into four attack categories:

denial-of-service (`dos'); network probe (`probe'); remote-to-local (`r2l'); and

user-to-root (`u2r'). The two latter attack categories can be further aggregated

20 Chapter 2. Network Intrusion Detection

to system penetration. The DARPA datasets are explained in more detail in

Chapter 4.

2.3.1 Denial-of-Service

Denial-of-service (DOS) attacks can either �ood the victim or exploit a �aw,

rendering the system or the service unusable. By �ooding, the attacker tries

to exhaust the network or processing capabilities of the host. As a result of

this, the target host is no longer able to provide a service to any valid user. If

the attacker launches the attack from multiple hosts, it is termed a distributed

denial-of-service (DDOS) attack. A well-known example of a successful DOS

attack was that of the slammer worm, which hit in 2003 and successfully

infected at least 75,000 hosts within the �rst 10 minutes of its release ([Moore

et al. 2003]). A thorough introduction to denial-of-service attacks is provided

by [Mirkovic et al. 2005].

2.3.2 System Scanning

By probing a computer system or an entire network infrastructure, a potential

attacker can learn about its characteristics and vulnerabilities. There are two

types of so-called `scanners': Network scanners and vulnerability scanners.

Among other things, network scanners search for IP addresses and TCP/UDP

ports. An attacker may thus obtain information about the network topology,

active hosts, operating systems and available services. One of the most

favoured network scanners is nmap ([Lyon 2009], [nmap 2011]).

Vulnerability scanners search for vulnerabilities on active hosts. They

output a list of active hosts in the scanned network that are vulnerable to

attacks known to the scanner. OpenVAS ([OpenVAS 2011]) is an example of

a well-established vulnerability scanner.

2.3.3 System Penetration

System penetration aims to gain unauthorised control over a system. This is

achieved by exploiting bugs, glitches, or other vulnerabilities in order to cause

2.4. Data Sources 21

unexpected behaviour that can be exploited for privilege escalation. These so-

called exploits can be classi�ed by the way in which they contact the vulnerable

host. Remote exploits can directly attack the host over the network, whereas

local exploits require the attacker to already have user privileges on the host.

The result of a successful remote exploit is local access to the attacked

system, and such a successful local exploit inevitably increases the privileges

of the attacker on the attacked host. The Metasploit framework ([Maynor &

Mookhey 2007], [Metasploit 2011]) provides an impressive arsenal of applicable

exploits. An open-source penetration testing framework focused on Web

applications is w3af (Web Application Attack and Audit Framework) by

[Riancho 2011].

2.4 Data Sources

Intrusion detection systems can be categorised according to `what' or `how'

they analyse. The `what' refers to what kind of data is analysed, and the

`how' refers to how the data is analysed.

Referring to what data is analysed, the data classi�ed by an IDS can be

either local host data or network data. An IDS that analyses the local data

of computer systems, in order to detect attacks on that speci�c host, is called

a host intrusion detection system (HIDS). An IDS that runs on specialised

network equipment, collecting network data, is called a network intrusion

detection system (NIDS). Network data is recorded and analysed in an attempt

to identify attacks and potential threats buried deep within in network tra�c.

In this thesis, our focus is on network intrusion detection.

2.4.1 Host Intrusion Detection

Host intrusion detection systems monitor events that occur locally on a

computer [Scarfone & Mell 2007]. Events are monitored and analysed by

local sensors. Optionally, events can be forwarded to a central management

system. Typical events analysed by host intrusion detection systems are those

related to the system kernel, the �le system, and users' account information.

Information of interest, such as running processes, modi�ed �les and logged-

22 Chapter 2. Network Intrusion Detection

in users, can be extracted from kernel audit trails, �le integrity checks and

registry data.

A major advantage of host intrusion detection systems is that they can

detect attacks when the malicious action occurs locally within the monitored

system. This is the case when the attacker has successfully gained user

access to a monitored system and then tries to elevate his privileges to

administrative level. Another advantage is that host intrusion detection is

una�ected by the encryption of network tra�c. Host-based intrusion detection

systems are typically complex, because they require individual management

and customisation for each monitored host ([Bace & Mell 2001]).

Early implementations of host-based intrusion detection systems are

IDES/NIDES ([Lunt et al. 1992], [Anderson et al. 1995]) and Haystack

([Smaha 1988]), developed in the late 1980s. More recent HIDS projects

worth noting are Tripwire ([Kim & Spa�ord 1994], [Tripwire 2011]), Samhain

([Wotring et al. 2005], [Samhain 2011]), and OSSEC ([Hay et al. 2008],

[OSSEC 2011]).

2.4.2 Network Intrusion Detection

In network intrusion detection, attacks are detected by monitoring and

analysing events associated with network tra�c [Scarfone & Mell 2007].

Network tra�c is mirrored by networking devices, such as switches, routers,

and �rewalls, or by network taps that are placed directly on the physical

transmission media, such as copper wire or optical �bre [Bejtlich 2006]. The

mirrored tra�c is analysed and concentrated by sensors placed at various

points in the network. It is common for the sensors to report potential attacks

and forward connection records to a central management system. If sensors

are well-placed, network intrusion detection systems can run completely

passively, monitoring a large network infrastructure ([Bace & Mell 2001]).

For a potential attacker, these systems are very di�cult to detect. In most

cases, the centralised nature of network intrusion detection systems makes the

monitoring and analysis of all tra�c di�cult in large networks.

Early implementations of network-based network intrusion detection

systems are DIDS ([Snapp et al. 1991]), NSM and NADIR (see both in

2.5. Detection Techniques 23

[Mukherjee et al. 1994]). More recent interesting NIDS projects are Bro

([Paxson 1999], [Bro 2011]) and Snort ([Roesch 1999], [Snort 2011]).

2.5 Detection Techniques

Investigating `how' di�erent IDS systems analyse collected data, we note that

analysis is either static or heuristic. When an IDS uses �lters and signatures to

describe attack patterns, the analysis is static; this is called signature detection

(or misuse detection). Signature detection is limited to the detection of known

attack patterns.

For the detection of unknown attacks, heuristic methods must be used.

Systems that use heuristic methods o�er the possibility of detecting patterns

that are not `normal'; these detection methods are termed anomaly detection.

A third very common approach for extending static detection methods is

called stateful protocol analysis. A more detailed overview of IDS detection

techniques is provided by [Kumar 1995], [Bejtlich 2004], and [Scarfone &

Mell 2007].

2.5.1 Signature Detection

The majority of today's intrusion detection systems search for prede�ned

patterns associated with a speci�c well-known attack. These signature-based

intrusion detection systems provide a separate, searchable pattern for each

attack. Signatures are hand-coded by human experts, based on detailed

knowledge of the attack ([Han & Kamber 2006]). Some systems can model

groups of attacks using state-based analysis techniques, but most systems fail

to detect variants of attacks. Signature detection is the prevalent kind of

intrusion detection in use today because it generates low false alarm rates

in comparison to other systems. Signature-based intrusion detection systems

depend upon frequent signature updates to keep up with new emerging threats

([Bace & Mell 2001] and [Scarfone & Mell 2007]).

There have been e�orts to automate the task of signature generation. [Kim

& Karp 2004], for example, propose a system that automatically generates

worm signatures for novel Internet worms. [Song et al. 2007], on the other

24 Chapter 2. Network Intrusion Detection

hand, reason that signature detection is an `arms race' between attacker

and defender which cannot be won by the defence. This is backed by

[Spinellis 2003], who proved that �nding a solution for the problem of reliably

identifying a known, bounded-length, mutating virus is already very di�cult.

A representative example of a signature-based intrusion detection system

is the Snort NIDS ([Roesch 1999], [Snort 2011]).

2.5.2 Stateful Protocol Analysis

Stateful protocol analysis tracks the state of network, transport and

application protocols. Each protocol has a pro�le that de�nes valid activities

and the transitional states between them. Pro�les are based on the protocol

standards issued by o�cial standards bodies and software vendors. Pro�les

should also take variations in standards and enhancements in di�erent

implementations into account [Scarfone & Mell 2007]. Protocol event

sequences identi�ed as having particular patterns of actions that deviate from

the de�ned pro�le are reported as potentially malicious. State tracking is very

resource intensive and relies heavily on carefully generated pro�les. Attacks

that do not violate any protocol pro�le cannot be detected through stateful

protocol analysis.

One of the prominent examples of stateful protocol analysis is published by

[Dreger et al. 2006]. They present an extension for the Bro IDS ([Paxson 1999],

[Bro 2011]), which performs dynamic application-layer protocol analysis for

a number of common and well-de�ned protocols (e.g. HTTP, IRC, FTP and

SMTP).

2.5.3 Anomaly Detection

Anomaly detection is based on the assumption that `normal' events can be

distinguished from potentially malicious events. An anomaly detection system

constructs a pro�le, or set of rules, from historical operational data. The

historical data should be free of unacceptable events. The resulting pro�le

then de�nes what the intrusion detection system will recognise as acceptable

behaviour. Pro�les can be related to the behaviour of users, or be completely

user-independent. One method of pro�ling is threshold-based, de�ning

2.6. Machine Learning Techniques 25

the frequency of occurrence of various events. Other methods use various

statistical or rule-based measures to map parametric `known' distributions

and non-parametric `learned' distributions ([Scarfone & Mell 2007]). Finally,

there is the option to use trained classi�ers.

Intrusion detection systems based on anomaly detection have the potential

to detect unknown attacks. The detection of unusual behaviour does not rely

on knowledge of the details of the attack. A human expert is needed to classify

the detected event and initiate appropriate action. New behaviour needs to

be continuously added to the pro�les in order to minimise the number of false

positives. Unfortunately, the false positive rate in current anomaly-based

intrusion detection systems is still unacceptably high, because these systems

still have signi�cant problems in modelling `normal' user behaviour ([Bace &

Mell 2001] and [Scarfone & Mell 2007]).

[Lakhina et al. 2005] show that anomalies naturally fall into distinct and

meaningful clusters when they are treated as events that alter the distribution

of tra�c features. Focusing on application data, [Wang & Stolfo 2004] present

a di�erent approach based on the detection of anomalous payloads. [Gates

& Taylor 2006] critically question the assumptions of the research community

made in the �eld of anomaly detection, especially with regard to network

intrusion detection. A more detailed classi�cation scheme together with

a summary and discussion of the main anomaly-based intrusion detection

technologies are presented by [Garcia-Teodoro et al. 2009].

An anomaly sensor for detecting stealthy port scans, Spade, is presented

by [Staniford et al. 2002]. Spade is available as a bleeding-edge extension for

the Snort NIDS ([Roesch 1999], [Snort 2011]).

2.6 Machine Learning Techniques

Machine learning techniques have been used for network intrusion detection

for some time, but the choice of the available training data is very limited.

One of the few widely used datasets is from the DARPA datasets ([Lippmann

et al. 2000a], [Lippmann et al. 2000b]), which also happens to be one of

the most comprehensive. The tcpdump data provided by the 1998 DARPA

Intrusion Detection Evaluation network was processed and used for the

26 Chapter 2. Network Intrusion Detection

1999 KDD Cup contest at the Fifth International Conference on Knowledge

Discovery and Data Mining. The learning task of this competition was to

classify the preprocessed connection records into either normal tra�c, or one

out of the four given attack categories (`dos', `probe', `r2l', `u2r').

Preprocessing of the data for the KDD Cup '99 competition was done with

the MADAMID framework described in [Lee 1999] and [Lee & Stolfo 2000].

Each connection record contains 41 input features grouped into basic features

and higher-level features. The dataset provides the training and testing

datasets in a full set, and also a `10%' subset version with modi�ed class

distributions. During the KDD Cup '99 competition, 24 entries were

submitted. The �rst three places were occupied by entries that used variants

of decision trees and showed only marginal di�erences in performance. In

ninth place in the challenge, was the 1-nearest neighbour classi�er. The �rst

17 submissions of the competition were all considered to perform well and are

summarised by [Elkan 2000].

Observing feature reduction on the KDD Cup '99 datasets, the majority

of published results are trained and tested on the `10%' training set only (see

[Sung 2003], [Kayacik et al. 2005] and [Lee et al. 2006]). Some researchers used

custom-built datasets, with 11,982 random records extracted from the `10%'

KDD Cup '99 training set (see [Chavan et al. 2004], [Chebrolu et al. 2005]

and [Chen et al. 2005]). [Sung 2003] applied single-feature deletion to the

KDD Cup '99 datasets, using neural networks and support vector machines.

With the SVM classi�er, they extracted a 30-feature set and, using the neural

network classi�er, they extracted a 34-feature set. For the SVM classi�er, they

also reduced the number of features for the �ve individual tra�c classes to

25 (`normal'), 7 (`probe'), 19 (`dos'), 8 (`u2r') and 6 (`r2l'). Important input

features were also identi�ed by [Chebrolu et al. 2005]. They investigated the

performance of Bayesian networks and classi�cation and regression trees, and

suggest a hybrid model using both classi�ers. The feature reduction using

the Markov blanket model found a 17-feature set, whereas classi�cation and

regression trees resulted in a 12-feature set.

[Chavan et al. 2004] use a decision tree approach for feature ranking per

class. For evaluation, they use arti�cial neural networks and fuzzy inference

systems. The authors reduce the number of features to 13 (`normal'), 16

2.6. Machine Learning Techniques 27

(`probe'), 14 (`dos'), 15 (`u2r') and 17 (`r2l'). [Kayacik et al. 2005] investigated

the relevance of each feature provided in the KDD Cup '99 intrusion detection

dataset in terms of information gain and present the most relevant feature for

each individual attack. [Chen et al. 2005] reduce the number of input features

using the �exible neural tree Model to 4 (`normal'), 12 (`probe'), 12 (`dos'),

8 (`u2r') and 10 (`r2l'). A genetic feature selection method was proposed by

[Lee et al. 2006]. Performance was measured using a selective naïve Bayes

classi�er. Both methods extracted a total of 21 features, with 11 features in

common.

A short time after the 1998 and 1999 DARPA intrusion detection system

evaluations, [McHugh 2000] wrote a detailed critique, identifying shortcomings

of the provided datasets. [Mahoney & Chan 2003] looked more closely at

the content of the 1999 DARPA evaluation tcpdump data. [Sabhnani &

Serpen 2004] investigated the reasons why classi�ers fail to detect most of

`r2l' and `u2r' attacks in the KDD Cup '99 datasets. [Brugger & Chow 2005]

applied the tcpdump tra�c data �les provided with DARPA datasets to the

Snort intrusion detection system.

The winning entries of the KDD Cup '99 contest, presented by

[Pfahringer 2000], used a variant of the C5 decision tree algorithm. The

second-placed decision tree solution, by [Levin 2000], build an optimal decision

forest. Third place was awarded to a decision tree solution labelled as MP13,

by [Vladimir et al. 2000]. [Agarwal & Joshi 2000] proposed a rule-based

classi�er model for multi-class classi�cation called PNrule. The model consists

of positive and negative rules that predict the presence or absence of a class

respectively. Classes could be individual attacks or whole categories, such as

`r2l' and `u2r'.

After the challenge, a number of new results using learning algorithms

on the KDD Cup '99 data were published. In the following papers, the

authors used the same training and testing data as requested in the challenge,

and provided comparable results: [Sabhnani & Serpen 2003] evaluate a

comprehensive set of machine learning algorithms and suggest a multi-

classi�er model with a multi-class topology. The di�erent algorithms applied

were a multilayer perceptron neural network, an incremental radial basis

function neural network, a maximum likelihood Gaussian classi�er, k-means

28 Chapter 2. Network Intrusion Detection

clustering, a nearest cluster algorithm, a leader algorithm, a hypersphere

algorithm, a fuzzy adaptive resonance theory mapping algorithm, and the

C4.5 decision tree.

[Hu & Hu 2005] applied the classical Adaboost algorithm and a modi�ed

version of the same to the KDD Cup '99 datasets. Decision stumps were

chosen as a weak classi�er and given as input to Adaboost. [Song et al. 2005]

demonstrate RSS�DSS, a genetic programming approach for large datasets

comparing the results of using the �rst 8 basic features only with using all

features of the dataset. A machine learning approach, based on unsupervised

presentation of data, is applied by [Kayacik et al. 2007]. They use a multi-

layer, self-organising feature-map hierarchy with customised datasets.

There are a number of papers with partially comparable results, where the

authors used the DARPA or KDD Cup '99 training data but applied di�erent

test sets to their trained classi�er. In an early paper, [Sinclair et al. 1999]

suggest genetic algorithms and decision trees for automatic rule generation

for an expert system that enhances the capability of an existing IDS. [Yeung

& Chow 2002] observed a nonparametric density estimation approach, based

on Parzen-window estimators with Gaussian kernels. [Mukkamala et al. 2004]

compared the performance of a linear genetic programming approach to

arti�cial neural networks and support vector machines.

[Abraham & Grosan 2006] investigate the results of linear genetic

programming and multi-expression programming. Other hybrid approaches

combine neural networks and support vector machines, published by

[Mukkamala et al. 2003], arti�cial neural networks and a fuzzy inference

system, by [Chavan et al. 2004], and decision trees and support vector

machines, by [Peddabachigari et al. 2007].

There are also a number of interesting publications where the results are

not directly comparable due to the use of di�erent training and test datasets.

[Debar et al. 1992] and [Cannady 1998] suggested the use of neural networks

as components of intrusion detection systems. [Zhang et al. 2001] compared

the performance of a selection of neural network architectures for statistical

anomaly detection to datasets from four di�erent scenarios. The use of hidden

Markov models to detect complex multi-stage Internet attacks that occur over

extended periods of time is described by [Ourston et al. 2003]. An event

2.7. Event Correlation and Report 29

classi�cation scheme based on Bayesian networks is proposed by [Kruegel

et al. 2003].

A framework for unsupervised learning, with two feature maps mapping

unlabelled data elements to a feature space, is suggested by [Eskin et al. 2002].

[Bivens et al. 2002] further illustrated that neural networks can be e�ciently

applied to network data in both a supervised and an unsupervised learning

approach. [Laskov et al. 2005] demonstrate that supervised learning

techniques applied to the KDD Cup '99 training data signi�cantly outperform

unsupervised methods. The best performance is achieved by non-linear

methods.

2.7 Event Correlation and Report

IDSs automatically monitor and correlate events that are collected by

IDS sensors, which are then analysed for potential intrusions. Monitored

events can occur either locally on a computer system or within a network

infrastructure. Once a potential attack or an anomalous pattern is detected,

an IDS generates an alert.

The fact that IDS sensors report to a central IDS management system

enables the intrusion detection system to observe the monitored infrastructure

from multiple points of view. Alarms generated by individual IDS sensors and

the IDS management system are documented in reports. These reports need

to be analysed and evaluated by human experts, who decide on what action to

take. Large IDS infrastructures can easily generate thousands or even millions

of events per day; their evaluation would be an unrealistic task for any human

being. For this reason, IDS systems need to be carefully tuned and maintained

within a given environment.

Generally, IDS sensors and IDS management systems are limited to

monitoring and analysis. Systems such as �rewalls, which introduce

countermeasures to prevent the success of attacks, are called intrusion

prevention systems (IPSs). Intrusion prevention can defend a target system

against an attacker without the administrator's direct involvement [Scarfone

& Mell 2007]. In theory, these systems can block malicious tra�c or system

calls before they cause any harm. In this respect, an IPS can be seen as an

30 Chapter 2. Network Intrusion Detection

enhancement of an existing �rewall, using well-known IDS features with very

low false alarm rates.

An example of an anomaly-based intrusion detection system focused on

event correlation is Prelude ([Prelude 2011]).

2.8 Conclusions

In this chapter, we covered the essential concepts of intrusion detection. We

learned that intrusions follow a timeline, which can be split into �ve phases:

reconnaissance, exploitation, reinforcement, consolidation, and pillage. This

process starts with the collection of information about potential targets and

�nishes with the successful compromise of the target system.

We de�ned attacks as sets of actions which attempt to compromise the

con�dentiality, data integrity and/or availability of a resource, and found that

di�erent types of attack can be classi�ed into three main attack categories:

denial-of-service, system scanning, and system penetration.

We learned that IDS systems can be classi�ed by either data source

or detection techniques. The former category can be subdivided into

host intrusion detection systems and network intrusion detection systems,

the latter into signature detection, stateful protocol analysis and anomaly

detection. The majority of current IDSs use signature-based detection, but

only systems based on anomaly detection have the potential to detect threats

previously unknown to the particular detector.

We learned that machine learning techniques have been applied to

intrusion detection for some time and that available training data is very

scarce. We also learned that IDSs need to handle large numbers of

events. These are produced by IDS sensors and correlated by a central IDS

management system.

In the next chapter, we introduce a number of data mining methods

that we have applied throughout this research work to handle these events

of classi�cation.

Chapter 3

Data Mining Methods

Contents

3.1 Introduction . 32

3.2 Decision Trees . 33

3.3 Bayesian Classi�cation 36

3.3.1 Naïve Bayes . 37

3.3.2 Bayesian Networks . 38

3.4 Backpropagation Neural Networks 40

3.4.1 The Perceptron . 40

3.4.2 Linear Separability . 41

3.4.3 The Perceptron and Delta Learning Rule 42

3.4.4 The Sigmoid Threshold Unit 44

3.4.5 Feed-Forward Networks and Backpropagation 44

3.5 Support Vector Machines 48

3.5.1 The Maximum Marginal Hyperplane 48

3.5.2 The Soft-Margin Method 51

3.5.3 Kernel Functions . 52

3.5.4 The Kernel Trick . 52

3.6 Recurrent Neural Networks 53

3.6.1 Basic Architecture . 53

3.6.2 Backpropagation Through Time 56

3.6.3 Real-Time Recurrent Learning 59

3.6.4 The Vanishing Error Problem 61

3.7 LSTM Recurrent Neural Networks 63

3.7.1 Constant Error Carousel 63

3.7.2 Memory Cells . 64

3.7.3 Memory Blocks . 64

3.7.4 The Forward Pass . 65

32 Chapter 3. Data Mining Methods

3.7.5 Forget Gates . 67

3.7.6 Backward Pass . 69

3.7.7 Peephole Connections 73

3.8 Conclusions . 75

3.1 Introduction

In this chapter, we present a selection of machine learning methods. Five of

these methods are traditional, static classi�ers, and two are classi�ers with

dynamic capabilities. Later in this thesis, these classi�ers are applied to

intrusion detection data.

Machine learning endows a computer with the ability to learn from

experience. In other words, it is concerned with the development of algorithms

that automatically improve by practice. Ideally, the more the learning

algorithm is run, the better the algorithm becomes. It is the task of the

learning algorithm to create a classi�er function from the training data

presented. The performance of this built classi�er is then measured by

applying it to previously unseen data.

Based on the training data, the learning process can be categorised into

supervised and unsupervised learning. In supervised learning, the training

data consists of input and output object pairs. Every input object is labelled

with a corresponding desired output. Seeing a number of valid input and

target output pairs, the supervised classi�er should learn to predict the target

output for any given valid input object. Unsupervised learning, however, trains

on data that consists only of input data without target output information.

The unsupervised classi�er learns from completely unlabelled data. It assumes

that objects that belong to the same class tend to form a cluster in some metric

space. In this thesis, we focus on the supervised learning approach by using

a fully labelled dataset.

All classi�ers presented are applicable to supervised learning tasks. The

static classi�ers can only provide a static mapping between input and output.

They are not suitable for solving supervised learning tasks of a temporal

3.2. Decision Trees 33

nature, such as sequence classi�cation problems where the input vectors are

presented in sequences with separate and distinct time steps. To solve these

problems, we require a classi�er with dynamic capabilities.

The selected static classi�ers covered in this chapter are decision trees

(C4.5 and J4.8 [Quinlan 1986] and [Quinlan 1993]), naïve Bayes ([John &

Langley 1995]), Bayesian networks ([Heckerman et al. 1995]), feed-forward

neural networks (FFNN [Rumelhart et al. 1994]) and support vector machines

(SVM [Boser et al. 1992] and [Cortes & Vapnik 1995]). Excellent overviews

of these static classi�ers presented are provided by [Mitchell 1997] and [Han

& Kamber 2006].

Chosen classi�ers with highly nonlinear dynamic capabilities are recurrent

neural networks (RNN [Rumelhart et al. 1986], [Williams & Zipser 1989],

[Williams & Zipser 1995], and [Hochreiter et al. 2001]) and, in particular, long

short-term memory (LSTM [Hochreiter & Schmidhuber 1996], [Hochreiter &

Schmidhuber 1997], [Gers et al. 1999] and [Gers et al. 2002]) recurrent neural

networks. The section on recurrent neural networks is included in this chapter

for reasons of clarity and completeness. A sound understanding of RNNs is

essential for working with LSTM RNNs.

3.2 Decision Trees

Decision tree learning is one of the commonest machine learning methods and

is very intuitive to understand. Learned functions are usually represented

in the form of a tree-like structure, representing a set of decisions that

can be translated into if-then rules. Depending on the algorithm used, the

representation may be binary or multi-branched.

Each node in a decision tree represents one attribute of an instance.

Branches descending from a node correspond to possible attribute values.

Leaves represent possible values of the target variable, given the path starting

at the root node and ending at the observed leaf.

To classify an item, the decision tree is followed from the root to a

leaf. At every node, an attribute is tested and, based on the outcome, the

corresponding branch is followed. This procedure continues until a leaf is

reached. All instances that reach a certain leaf are classi�ed by the value the

34 Chapter 3. Data Mining Methods

leaf represents.

The test at each node usually compares an attribute value with a

constant, but there are also trees that apply more complex operations, such

as comparing two attributes with each other.

Attributes with nominal values are tested once, with one descending

branch per possible value. Numeric attributes need to be converted into

nominal attributes. Usually, the node determines if the observed value is

greater or less than a predetermined constant, giving two descending branches.

Nodes with three descending branches can also be produced by adding an

equal-to comparison or by treating missing values as separate attribute values.

Several other alternatives for handling numeric attributes also exist. Numeric

attributes, in contrast to nominal attributes, can be tested several times in

the tree, each time using a di�erent predetermined constant.

Figure 3.1 illustrates a simplistic decision tree for the detection of an

attack on a remotely accessible computer system. The leaf nodes of the tree

return the result of the classi�cation (attack? YES/NO). At the root node,

the decision tree checks if a root shell is obtained on the observed system.

In the absence of a running root shell, the left branch is processed. When

the network communication protocol port is not whitelisted as an accepted

destination, the amount of data sent to this port is tested against a given

threshold, and connections with source data above the threshold are classi�ed

as an attack. The right branch is processed if the root shell is obtained on the

observed system. Then the local host intrusion detection system is checked

for related alerts; an alert classi�es the connection as an attack. If the IDS

does not give an alarm, the amount of data received is tested, and connections

with destination data below a given threshold are classi�ed as attacks. For

an excellent introduction to decision trees, see the corresponding chapter in

[Mitchell 1997]. For more information, see [Quinlan 1993].

Two popular decision tree learning algorithms are ID3 and its successor,

C4.5, introduced by [Quinlan 1986] and [Quinlan 1993]. Like most decision

tree learning algorithms, they pursue a top-down `greedy' search through the

space of possible decision trees. In the following, we outline ID3, which is a

well-known decision tree algorithm.

ID3 starts with a single root node representing all training samples. At

3.2. Decision Trees 35

root shell

NO

obtainedunused

destination port

whitelisted silent alarm

YESdestination data

threshold
belowabove

NO YES

source data

unknown

above below
threshold

YES NO

host IDS

Figure 3.1: A simplistic decision tree for the detection of a user-to-root attack
on a computer system. An example is classi�ed by sorting it through the tree.
Classi�cation starts at the root node and ends at one of the leaves, returning the
classi�cation associated with it (attack? YES/NO).

each node, an attribute value test is conducted. The test returns the attribute

that best separates the training examples according to the target classi�cation,

and the chosen attribute then becomes the so-called `decision attribute' for

the node. For every value of the decision attribute, a descending branch and

a child node are created, and the samples are partitioned accordingly. Testing

continues for every node representing a partition until all samples within every

partition are of the same class. Finally, the node becomes a leaf and is labelled

with the name of the target class.

Most decision tree algorithms use a statistical property called information

gain. Information gain is an entropy-based measure that selects an attribute

that best separates samples into individual classes. The attribute with the

highest information gain becomes the decision attribute for the current node

when building a tree.

Information gain is based on the concept of information entropy, which

describes the amount of information in a signal or event. It is the expected

reduction of entropy caused by the partitioning of examples, according to a

36 Chapter 3. Data Mining Methods

considered attribute. It is de�ned as:

Gain(S,A) = Entropy(S)−
∑

v∈Values(A)

|Sv|
|S|

Entropy(Sv)

where S is the collection of training examples, A is the observed attribute,

V alues(A) is the set of all possible values for A, and Sv is the subset of S

where A has the value v.

Given that the target classi�cation is Boolean, the information entropy is

de�ned as:

Entropy(S) = −P1 log2 P1 − P2 log2 P2

with a collection of training examples S that can be classi�ed, with respect

to an attribute, into two example sets, P1 and P2. 0log0 is de�ned as 0. The

entropy is 1 when the collection contains an equal number of positive and

negative examples. Otherwise, the entropy is between 0 and 1.

In cases where the target classi�cation can take c di�erent values, the

information entropy is:

Entropy(S) =
c∑

i=1

−Pi log2 Pi

Decision tree learning can be applied to problems where the instances are

described as a �xed set of attributes and values. The output of the target

function has discrete values, and training data is noisy and may be missing

attribute values. Both make decision tree learning well-suited to network

intrusion detection.

3.3 Bayesian Classi�cation

Bayesian classi�ers are statistical classi�ers that predict class membership

probabilities. They are based on Bayes' theorem, proved by and named

after the mathematician Thomas Bayes (1702 - 1761). It provides a way

of calculating the posterior probability from the prior probability.

3.3. Bayesian Classi�cation 37

Bayes' theorem is:

P (h|D) =
P (D|h)P (h)

P (D)

where P (h) is the prior probability that the hypothesis h holds; it is `prior'

in the sense that it does not take into account any information about the

training data, D. P (h|D) is the posterior probability that h holds, given D.

P (D|h) is the posterior probability observing D, given a scenario in which h

holds. P (D) is the prior probability that the data D will be observed.

According to studies comparing classi�cation algorithms referenced by

[Han & Kamber 2006], the performance of the naïve Bayes classi�er is

comparable to decision trees and selected neural networks. The chapters on

Bayesian learning by [Mitchell 1997] and [Han & Kamber 2006] provide an

excellent introduction to this �eld.

3.3.1 Naïve Bayes

The naïve Bayes is a simple probabilistic classi�er. It assumes that the e�ect of

a variable value on a given class is independent of the values of other variables.

This assumption is called `class conditional independence' and reduces the

number of parameters. In practice, this is not a serious problem, because the

naïve Bayes models perform well, even if this assumption does not hold for

the analysed data.

The algorithm stores the prior class probabilities and the posterior

probability of each attribute assigned to that class. During the learning

phase, it estimates these probabilities from examples by simply measuring

the frequency of their occurrence. The prior probability is the portion of

examples from each class. The posterior probability is the frequency at which

attribute values occur in the given class.

During an observation, the algorithm operates under the assumption that

attributes are conditionally independent. The algorithm uses Bayes' theorem

to calculate the posterior probability of each class. It returns the class label

with the highest probability.

Despite its simplicity and the assumptions made, given class conditional

independence, this algorithm can often outperform more sophisticated

38 Chapter 3. Data Mining Methods

classi�cation methods in terms of both accuracy and speed, especially when

applied to large datasets. More detailed information about the naïve Bayes

classi�er is provided by [John & Langley 1995].

3.3.2 Bayesian Networks

Bayesian networks, also called `belief' or `probabilistic' networks, are

statistical classi�ers that use graphical models. They are drawn as directed

acyclic graphs of causal relationships. Every node represents an attribute,

and the edges describe the relations between them.

Every node contains a conditional probability table that de�nes the

probability distribution, and this table is used to predict the class probabilities

for every given instance. The probability of each feature value depends on the

values of the attributes of the parent nodes, nodes without parents having an

unconditional probability distribution.

Figure 3.2 shows a simplistic Bayesian belief network for the detection of

network probes. There is a node for each of the two attributes `source_data'

and `%_of_connections_with_same_destination_port_and_service'. The

third node for the class attribute `connection_type' has edges to both other

nodes. The nodes contain the tables with the probability distributions in

order to predict the class probabilities for a given instance. In this example,

table values are normalised to [-1,1].

To calculate the probability of each class value for a given instance, we need

to assume that there are no missing attributes. The conditional probability

table for every node in the network provides an attribute value based on the

row, as determined by its parent's attribute values. The joint probability of

each class value for any given instance [a1, a2, ..., an] to the tuple of attributes

[A1, ..., An] can be computed by multiplying the probabilities provided by each

node:

Pr[a1, a2, ..., an] =
n∏

n=1

Pr[ai|Parents(Ai)]

where Parents(Ai) is the set of immediate predecessors of the attribute

Ai. To obtain the conditional probabilities, we need to normalise the joint

probabilities by dividing them by their sum.

3.3. Bayesian Classi�cation 39

.057

.620
0

.062
.001
.003

.001
0

.001 .005
0

0
.082

.075

.001
0

.001 0
.005
.005 .001

−1 −.95 −.84 −.73 −.71 −.69 −.61 −.60 −38
.228

−.39 −.28 +1
.627

.224probe
normal

 source data

.959

normal

connection type

probe

.041

with same destination
 port and service

% of connections

.038

.574
.026
.082

.008

.010
.030
.014

.140

.013
.113

0
.646

−1 −.99 −.93 −.87 −.49 +1+.79

.307
normal
probe

Figure 3.2: A simplistic Bayesian belief network for the detection of network
probes. The class attribute `connection_type' has edges to the two other
attributes `source_data' and `%_of_connections_with_same_destination_port_-
and_service'. They contain the tables with the probability distributions to predict
the class probabilities for a given instance.

The applicable learning method for Bayesian networks depends on the

availability of network structure and variables. The network structure may

be either given in advance, be directly inferred from data, or be created by

experts. The variables can be either fully observable, partially hidden, or

entirely hidden.

If the network structure and variables are fully observable, the conditional

probability table entries can be estimated. When the network structure and

some variables are given, the gradient ascent algorithm can be applied in order

to search through the space of all possible conditional probability table entries.

Thus, a set of possible conditional probability table entries can be learned.

Bayesian learning is di�cult if the network structure is unknown. In this

case, a search through the space of all possible networks is required. A simple

40 Chapter 3. Data Mining Methods

and very fast heuristic search algorithm called K2 can be applied if the data

is fully observable.

K2 starts with a given attribute order where each attribute represents a

node. The algorithm performs a greedy search, adding edges from previously

processed nodes to the current node. For all edge combinations that can be

added, K2 calculates the total network score. After processing the node, K2

keeps the edges that score highest. Then K2 continuous processing the next

node until the �nal node is reached. To �nd a good Bayesian network, K2

needs to run several times with di�erent random orders of attributes.

Besides being computationally intensive, the main advantage of the

Bayesian networks classi�er compared to the naïve Bayes is that it is less

constraining. Bayesian networks can easily be interpreted by humans, and

the estimates obtained can be ranked, which allows the cost to be minimised.

For more information about Bayesian networks, see [Heckerman et al. 1995].

3.4 Backpropagation Neural Networks

Arti�cial neural networks are inspired by biological learning systems and

loosely model their basic functions. They consist of a densely interconnected

group of simple neuron-like threshold switching units. Each unit takes a

number of real-valued inputs and produces a single real-valued output. Based

on the connectivity between the threshold units and element parameters, these

networks can model complex global behaviour. The corresponding chapters

in [Mitchell 1997] and [Han & Kamber 2006] provide excellent introductions

to neural networks. [Rumelhart et al. 1994] provide a survey of practical

applications.

3.4.1 The Perceptron

The most basic type of arti�cial neuron is called a perceptron. Perceptrons

consist of a number of external input links, a threshold, and a single output

link. Additionally, perceptrons have an internal input, w0, called bias that is

always �xed at a value of `1'.

The perceptron takes a vector of real-valued input values, all of which

3.4. Backpropagation Neural Networks 41

are weighted by a multiplier. In a previous perceptron training phase, the

perceptron learns these weights on the basis of training data. It sums all

weighted input values and `�res' if the resultant value is above a pre-de�ned

threshold. The output of the perceptron is always Boolean, and it is considered

to have �red if the output is `1'. The deactivated value of the perceptron is

`−1', and the threshold value is, in most cases, `0'.

The perceptron output o, given the inputs x1, ..., xn and trained weights

w1, ..., wn, is computed as follows:

o =

1 if
∑n

i=0 wnxn > 0;

−1 otherwise.

The constant internal input x0 of value `1' is associated with the weight

w0. For the perceptron to �re, the sum of the weighted inputs w1x1+...+wnxn

must exceed the value −w0 of the threshold.

Single perceptron units can already represent a number of useful functions.

Examples are the Boolean functions AND, OR, NAND and NOR. Other

functions are only representable using networks of neurons. Single perceptrons

are limited to learning only functions that are linearly separable. In general,

a problem is linear and the classes are linearly separable in an n-dimensional

space if the decision surface is an (n− 1)-dimensional hyperplane.

The general structure of a perceptron is shown in Figure 3.3.

3.4.2 Linear Separability

To understand linear separability, it is helpful to visualise the possible inputs

of a perceptron on the axes of a two-dimensional graph. Figure 3.4 shows

representations of the Boolean functions AND and XOR. The AND function

is linearly separable, whereas the XOR function is not. In the �gure, pluses

are used for an input where the perceptron �res and minuses, where it does

not. If the pluses and minuses can be completely separated by a single line, the

problem is linearly separable. The weights of the trained perceptron should

represent that line.

42 Chapter 3. Data Mining Methods

n

Σ
i=0

w x > 0ii1 if

Σ

i=0
iiw x Σ

n

2

w

w

0

1

w

n

nx

2x

1x

inputs weighted sum activation function output

w0

x =1

o={−1 if otherwise

Figure 3.3: The general structure of the most basic type of arti�cial neuron, called
a perceptron. Single perceptrons are limited to learning linearly separable functions.

3.4.3 The Perceptron and Delta Learning Rule

Perceptron training is learning by imitation, which is called `guided learning'.

During the training phase, the perceptron produces an output and compares

it with a derived output value provided by the training data. In cases

of misclassi�cation, it then modi�es the weights accordingly. [Minsky &

Papert 1969] show that in a �nite time, the perceptron will converge to

reproduce the correct behaviour, provided that the training examples are

linearly separable. Convergence is not assured if the training data is not

linearly separable.

A variety of training algorithms for perceptrons exist, of which the most

common are the perceptron learning rule and the delta learning rule. Both

start with random weights and both guarantee convergence to an acceptable

hypothesis.

Using the perceptron learning rule algorithm, each weight wi associated

3.4. Backpropagation Neural Networks 43

1

0

0 1

1

0

0 1

+ +

+

+

+_

_

_

logical AND logical XOR

Output

0

1
1
0

0

0 0

1
11

1

(linearly separable) (not linearly separable)

InputInput Output

0

1 1
1
0

0

0

0

0

1
11

InputInput

1
1 2 1 2

Figure 3.4: Representations of the Boolean functions AND and XOR. The �gures
show that the AND function is linearly separable, whereas the XOR function is not.

with input xi is modi�ed at every step using the rule:

wi+1 ← wi +∆wi

with

∆wi = η(t− o)xi

where t is the target output of the current example, o is the output generated

by the perceptron, and η is the learning rate. The learning rate is a constant

that controls the degree to which the weights are changed. The algorithm will

only converge towards an optimum if the training data is linearly separable,

and the learning rate is su�ciently small. The perceptron rule fails if the

training examples are not linearly separable.

The delta learning rule was speci�cally designed to handle linearly

separable and linearly non-separable training examples. It also calculates the

errors between calculated output and output data from training samples, and

44 Chapter 3. Data Mining Methods

modi�es the weights accordingly. The modi�cation of weights is achieved by

using the gradient optimisation descent algorithm, which alters them in the

direction that produces the steepest descent along the error surface towards

the global minimum error. The delta learning rule is the basis of the error

backpropagation algorithm, which we will discuss later in this section.

3.4.4 The Sigmoid Threshold Unit

The sigmoid threshold unit is a di�erent kind of arti�cial neuron, very similar

to the perceptron. It computes a linear combination of all weighted input net

that can include an optional bias θ. Additionally, there is an optional positive

constant k multiplied by the result, which determines the steepness of the

bias. The output o is computed as:

oj =
1

(1− e−k×netj)

with

netj =
∑
i

wixi + θj.

The major e�ect on the perceptron is that the output function of the sigmoid

threshold unit is a sigmoid function. The threshold output is a continuous

function of its input, which ranges between 0 and 1. It is often referred to as

the `squashing' function, because it maps a very large input domain onto a

small range of outputs. For a low total input value, the output of the sigmoid

function is close to zero, whereas it is close to one for a high total input value.

The slope of the sigmoid function is adjusted by the threshold value.

The advantage of neural networks using sigmoid units is that they are

capable of representing non-linear functions. Cascaded linear units, like the

perceptron, are limited to representing linear functions. A sigmoid threshold

unit is sketched in Figure 3.5.

3.4.5 Feed-Forward Networks and Backpropagation

In feed-forward neural networks (FFNNs), sets of neurons are organised in

layers, where each neuron computes a weighted sum of its inputs. Input

3.4. Backpropagation Neural Networks 45

j

(output to
next layer)

previous layer)
(net input) (compute output)

x1

x2

xn

w

w

1

2

wn

(input from
inputs weighted sum sigmoid threshold function

output

bias

i=0

n

iw x +i jnet = 1
1+e −netj

o =jj

Σ

Σ

θj

θ

Figure 3.5: The sigmoid threshold unit is capable of representing non-linear
functions. Its output is a continuous function of its input, which ranges between 0
and 1.

neurons take signals from the environment, and output neurons present

signals to the environment. Neurons that are not directly connected to the

environment, but which are connected to other neurons, are called hidden

neurons.

Feed-forward networks are loop-free and fully connected. This means that

each neuron provides the input to each neuron in the following layer, and that

none of the weights give an input to a neuron in a previous layer.

The simplest type of neural feed-forward networks are single-layer

perceptron networks. Single-layer neural networks consist of a set of input

neurons, de�ned as the input layer, and a set of output neurons, de�ned as

the output layer. The outputs of the input-layer neurons are directly connected

to the neurons of the output layer. The weights are applied to the connections

between the input and output layer.

46 Chapter 3. Data Mining Methods

In the single-layer perceptron network, every single perceptron calculates

the sum of the products of the weights and the inputs. The perceptron �res

`1' if the value is above the threshold value; otherwise, the perceptron takes

the deactivated value, which is usually `-1'. The threshold value is typically

zero.

Sets of neurons organised in several layers can form multilayer, forward-

connected networks. The input and output layers are connected via at least

one hidden layer, built from set(s) of hidden neurons. The multilayer feed-

forward neural network sketched in Figure 3.6, with one input layer and three

output layers (two hidden and one output), is classi�ed as a 3-layer feed-

forward neural network. For most problems, feed-forward neural networks

with more than two layers o�er no advantage.

Multilayer feed-forward networks using sigmoid threshold functions are

able to express non-linear decision surfaces. Any function can be closely

approximated by these networks, given enough hidden units.

x

x

x
w wwhi ij jk

2

n

1

output layerhidden layerhidden layerinput layer i j

Figure 3.6: A multilayer feed-forward neural network with one input layer and
three output layers. Using neurons with sigmoid threshold functions, these neural
networks are able to express non-linear decision surfaces.

The most common neural network learning technique is the error

backpropagation algorithm. It uses gradient descent to learn the weights in

3.4. Backpropagation Neural Networks 47

multilayer networks. It works in small iterative steps, starting backwards from

the output layer towards the input layer. A requirement is that the activation

function of the neuron is di�erentiable.

Usually, the weights of a feed-forward neural network are initialised

to small, normalised random numbers using bias values. Then, error

backpropagation applies all training samples to the neural network and

computes the input and output of each unit for all (hidden and) output layers.

The inputs are propagated forwards through the network, starting from

the input layer. Let j be some network unit, and let k be some non-input unit.

If j is an input unit, the actual output value is equal to its input oj = netj.

Given the network input netj, of non-input unit k, the output ok, using the

sigmoid activation function, is computed as:

ok =
1

1 + e−netk

with

netk =
∑
k

wjkoj + θk

where oj are the outputs from the previous layer connected to unit k with

their corresponding weights wjk.

Next, the backpropagation learning algorithm propagates the error

backwards, and the weights and biases are updated in order to re�ect the

error. Starting from the output layer, it compares the network output ok with

the corresponding desired target output tk. It calculates the error ek for each

output neuron using some error function to be minimised. Using the mean

squared error, the error ek is computed as:

ek = ok(1− ok)(tk − ok)

Next, we calculate the error signal of each unit in preceding layers as follows:

ej = oj(1− oj)
∑
k

ekwjk

Finally, we update the increments for each weight, wij ← wij + ejoi, and the

48 Chapter 3. Data Mining Methods

biases, θj ← θj + ej.

This process repeats itself until all network outputs are within an

acceptable range, or some other terminating condition is reached.

3.5 Support Vector Machines

The basic principles for support vector machines (SVMs) were developed by

[Boser et al. 1992] and [Cortes & Vapnik 1995]. Support vector machines

can classify two-class problems with both linearly and non-linearly separable

data. For linearly separable data, the support vector machine searches for

an optimal linear hyperplane separating the tuples of the two classes. In the

case of non-linear data, the support vector machine uses a non-linear mapping

of the input vectors from the input space to classify the training data into a

higher dimension. Such non-linear mapping is determined by a kernel function

and always exists. Within this dimension, it �nds the optimal linear separating

hyperplane. The corresponding chapter on SVMs by [Han & Kamber 2006]

provides an excellent introduction to this �eld. For more detailed information

on the SVM classi�er, see [Platt 1999] and [Keerthi et al. 2001].

3.5.1 The Maximum Marginal Hyperplane

Consider the simple case of a linearly separable problem with two classes,

where the training data is given in the form (X, y), where X is the training

tuple, and y is the associated class membership. The training tuple is

presented repeatedly to the classi�er in order for it to learn the decision

function D(x).

The decision function can be written as:

D(x) =
N∑
i=1

wiϕi(x) + b

where wi is the weights, with n as the number of attributes, and ϕi is an

identity function of x. For D(x) > 0, pattern x belongs to one class, and for

D(x) ≤ 0, pattern x belongs to the other class.

3.5. Support Vector Machines 49

Once learned, the decision function can be used to classify previously

unseen data.

In this context, D(x) is referred to as the decision surface or separating

hyperplane. All points x that lie on this decision surface satisfy the equation:

WX + b = 0

where W is the weight vector W = w1, w2, ..., wn, with n attributes. X is the

training tuple X = (x1, x2), with x1 and x2 being the values of the attributes.

b is the bias.

Ideally, the hyperplane will separate the two classes such that WX+b > 0

de�nes all points belonging to one class, and WX + b ≤ 0 those belonging to

the other class.

The input vectors can be represented as dots in a 2-dimensional space,

where the hyperplane can be represented as a straight line. It splits the input

vectors into the two classes they might belong to.

The SVM algorithm searches for the hyperplane with the maximummargin

property. This special maximum-margin hyperplane maximises the smallest

distance of the closest training samples of both classes to the hyperplane.

The separating hyperplane is constructed from selected data points that

are close to the borders of the classes. They are called support vectors and

reside on the boundary margin. The accuracy and speed of a support vector

machine is determined by the number of chosen support vectors. A small

number of required support vectors indicates that the data can be separated

well.

Let us consider a linearly separable case with two classes identi�ed by

yi ∈ {1,−1}. The shortest distance between the separating hyperplane and

the closest positive (negative) pattern in the training set is d+(d−). This value

is de�ned as the `margin', M , which the SVM algorithm tries to maximise

during training.

Figure 3.7 shows two classes separated by a maximum margin hyperplane

with the decision function D(x). The distance from the hyperplane to any

point on H1 or H2 is maximal. The support vectors are circled with a thicker

border.

50 Chapter 3. Data Mining Methods

maximum margin
 hyperplane

D(x)

H2

H1

attribute 1

at
tr

ib
ut

e
2

class 2

class 1

 margin
maximum

d

d−

+

support
 vectors

(y =+1)
2

(y =−1)1

Figure 3.7: The two classes are separated by the maximum margin hyperplane
with the decision function D(x). The �gure shows the support vectors on H1 and
H2 with a thicker border. The distance from the hyperplane to any point on the
support vectors is maximal.

3.5. Support Vector Machines 51

In the linearly separable case, all training data will adhere to the following

two constraints:

wxi + b ≥ +1 (for yi = +1)

wxi + b ≤ −1 (for yi = −1)

A vector w and scalar b therefore exist such that:

yi(wxi + b)− 1 ≥ 0, i ∈ {1, ..., l}

We can de�ne the hyperplanes H1 : wxi + b = 1 and H2 : wxi + b = −1,
which are parallel to the separating hyperplane, but on opposite sides. The

tuples that fall on these two hyperplanes are called support vectors. The

perpendicular distance from H1 and H2 to the separating hyperplane is,

therefore, |1−b|
||w|| and |−1−b|

||w|| . It follows from this that d+ = d− = 1
||w|| , and

margin M = 2
||w|| .

3.5.2 The Soft-Margin Method

Most real-world problems do not contain linearly separable data. The SVM

algorithm can be extended with the so-called `soft-margin' method in order

to maximise the margin and, at the same time, minimise the upper limits

of the error originating from misclassi�cation. For this, we introduce the

positive variables ξi ≥ 0, i = 1, ..., l called `slack' variables, so that we have

the following constraints:

yi(wxi + b) ≥ 1− ξi, i ∈ {1, ..., l}

where ξ ≥ 0, ∀i.

Under the new conditions, ξi must exceed unity for an error to occur, and∑
i ξi represents an upper limit to the number of training errors.

The trade-o� between margin and classi�cation error is driven by an

introduced constant, C. There is no known straightforward method for

choosing this constant, although a number of supporting techniques do exist.

52 Chapter 3. Data Mining Methods

3.5.3 Kernel Functions

Another method exists that allows non-linear decision boundaries. For this, we

need to transform the input vectors into a feature space of a higher dimension.

The search for the linear separating hyperplane is done within that space. A

linear hyperplane in the higher-dimension feature space corresponds to a non-

linearly separating hypersurface in the original space.

To classify the data in a higher-dimension feature space, where it is linearly

separable, the data needs to be transformed by a non-linear transformation,

Φ : x→ x′ . This is illustrated in Figure 3.8.

Φ

2

1

at
tr

ib
ut

e

attribute

:x −> x

Figure 3.8: Classi�cation of non-linearly separable data in a higher-dimension
feature space. The data needs to be transformed by a non-linear transformation
Φ : x→ x′. A linear hyperplane in the higher-dimension feature space corresponds
to a non-linearly separating hypersurface in the original space.

The transformation of the data points to a higher-dimension feature space

comes at signi�cant cost. A mathematical technique called the kernel `trick'

allows us to search for a linear hyperplane in new, higher-dimension feature

spaces without transforming the data points.

3.5.4 The Kernel Trick

When searching for a linear SVM in a higher-dimension space, the training

tuples X = (x1, x2, ..., xn) appear as dot products of two non-linear

3.6. Recurrent Neural Networks 53

transformations Φ(Xi)× Φ(Xj). Fortunately, it is mathematically equivalent

to applying a kernel function on the training tuple:

K(Xi, Xj) = Φ(Xi)× Φ(Xj).

By using a kernel function, we can avoid the higher-dimension mapping

and perform all calculations in the original feature space. Interestingly, this

works even without knowledge of the correct mapping. Well-studied kernel

functions, each resulting in a di�erent non-linear classi�er, include:

K(Xi, Xj) =


(Xi ×Xj + 1)h (polynomial kernel of degree h)

e−||Xi−Xj ||2/2σ2
(Gaussian radial basis function kernel)

tanh(κXi ×Xj − δ) (sigmoid kernel).

There is no way to determine which kernel function will provide the best

performance for a given dataset. In general, all kernel functions provide similar

performance. An advantage of SVMs is that they always �nd a global solution.

Neural networks, by contrast, can get stuck in a local minimum.

3.6 Recurrent Neural Networks

Recurrent neural networks (RNNs) are dynamic systems; they have an

internal state at each time step of the classi�cation. This is due to

circular connections between higher- and lower-layer neurons and optional self-

feedback connections. These feedback connections enable RNNs to propagate

data from earlier events to current processing steps. Thus, RNNs build a

memory of time series events.

3.6.1 Basic Architecture

RNNs range from partly to fully connected, and two simple RNNs are

suggested by [Jordan 1986] and [Elman 1990]. The Elman network is similar to

a three-layer neural network, but additionally, the outputs of the hidden layer

are saved in so-called `context cells'. The output of a context cell is circularly

54 Chapter 3. Data Mining Methods

x 1 x 2

hidden layer

output layer

input layer

Figure 3.9: This �gure shows a feed-forward neural network.

x 1 x 2

context cells

Figure 3.10: This �gure shows an Elman neural network.

fed back to the hidden neuron along with the originating signal. Every hidden

neuron has its own context cell and receives input both from the input layer

and the context cells. Elman networks can be trained with standard error

backpropagation, the output from the context cells being simply regarded

as an additional input. Figures 3.9 and 3.10 show a standard feed-forward

network in comparison with such an Elman network.

Jordan networks have a similar structure to Elman networks, but the

context cells are instead fed by the output layer. A partial recurrent neural

3.6. Recurrent Neural Networks 55

x 1 x 2

Figure 3.11: This �gure shows a partially recurrent neural network with self-
feedback in the hidden layer.

Figure 3.12: This �gure shows a fully recurrent neural network (RNN) with self-
feedback connections.

network with a fully connected recurrent hidden layer is shown in Figure 3.11.

Figure 3.12 shows a fully connected RNN.

RNNs need to be trained di�erently to the feed-forward neural networks

(FFNNs) described in Section 3.4.5. The most common and well-documented

learning algorithms for training RNNs in temporal, supervised learning tasks

are backpropagation through time (BPTT) and real-time recurrent learning

56 Chapter 3. Data Mining Methods

(RTRL). In BPTT, the network is unfolded in time to construct an FFNN.

Then, the generalised delta rule is applied to update the weights. This is

an o�ine learning algorithm in the sense that we �rst collect the data and

then build the model from the system. In RTRL, the gradient information is

forward propagated. Here, the data is collected online from the system and

the model is learned during collection. Therefore, RTRL is an online learning

algorithm.

3.6.2 Backpropagation Through Time

The BPTT algorithm makes use of the fact that, for a �nite period of time,

there is an FFNN with identical behaviour for every RNN. To obtain this

FFNN, we need to unfold the RNN in time. Figure 3.13 shows a simple, fully

recurrent neural network with a single two-neuron layer. The corresponding

feed-forward neural network, shown in Figure 3.14, requires a separate layer

for each time step with the same weights for all layers. If weights are identical

to the RNN, both networks show the same behaviour.

w12w11 w22
w21

C C21

Figure 3.13: A simple fully recurrent neural network with a two-neuron layer is
shown in this �gure.

The unfolded network can be trained using the backpropagation algorithm

described in Section 3.4.5. At the end of a training sequence, the network

is unfolded in time. The error is calculated for the output units with

existing target values using some chosen error measure. Then, the error is

injected backwards into the network and the weight updates for all time steps

calculated. The weights in the recurrent version of the network are updated

with the sum of its deltas over all time steps.

We calculate the error signal for a unit for all time steps in a single pass,

using the following iterative backpropagation algorithm. We consider discrete

time steps t = 1, 2, 3, The network starts at a point in time t0 and runs until

a �nal time t1. For an intermediate time t we de�ne t0 ≤ t ≤ t1. A single time

3.6. Recurrent Neural Networks 57

w21 w12 w22

w21w11 w12 w22

w11

...
...

...

C C

CC

C C

C C

time

t

1

0

t−12,t−1

2,1

2,01,0

1,1

1,t−1

1,t 2,t

Figure 3.14: Here, we have a feed-forward neural network with a separate layer
for each time step.

step involves the update of all units and the computation of all error signals.

Let xnet
k (t) be an m-tuple of input units I = xk(t), 0 < k < m, and yk(t)

be an n-tuple of non-input units U = yk(t), 0 < k < n, in a fully connected

recurrent neural network. Concatenating xnet
k (t) and yk(t), all network units

are an m+ n-tuple de�ned as

xk(t) =

xnet
k (t) if k ∈ I

yk(t) if k ∈ U
(3.1)

Let fi be the di�erentiable, non-linear squashing function of non-input

unit i ∈ U , so that the output yi(t), at time step t, is given by

yi(t) = fi(neti(t)) (3.2)

with the weighted input

neti(t) =
∑
j

wijyj(t− 1) (3.3)

58 Chapter 3. Data Mining Methods

where yj(t−1) are the outputs from the previous time step of units connected

to i, with their corresponding weights wij.

We denote T (t) as the set of indices k ∈ U for which target values dk(t)

matching the output yk(t) at time t should exist. Cost function is the summed

error Etotal(0, t) from time t0 to time t1, which we want to minimise using a

learning algorithm. It is de�ned as

Etotal(t0, t1) =

t1∑
τ=t0+1

E(τ), (3.4)

where the total error at time t, using the squared error as an objective function,

is

E(t) =
1

2

∑
k∈U

(ek(t))
2, (3.5)

with the error of an arbitrary output unit k at time t

ek(t) =

dk(t)− yk(t) if k ∈ T (t),

0 otherwise.
(3.6)

The error signal of a non-input unit i, at a time τ , is

δi(τ) = −
∂Etotal(0, t)

∂neti(τ)
.

To get the backpropagated error δi(τ) for all i ∈ U , t0 ≤ τ ≤ t1 in a single

pass, we can calculate

δi(τ) =

f ′
i(neti(τ))ei(τ) if τ = t,

f ′
i(neti(τ))

(
ei(τ) +

∑n
l∈U wliδl(τ + 1)

)
if t0 + 1 ≤ τ < t

. (3.7)

After the backpropagation computation is performed down to time 1, we

can now calculate the weight update ∆wij in the recurrent version of the

network. This is done by summing the corresponding weight updates for all

3.6. Recurrent Neural Networks 59

time steps:

∆wij(t1) = −
∂Etotal(t0, t1)

∂wij

= −
t1∑

τ=t0+1

δi(τ)xj(τ − 1).

BPTT is described in more detail in [Werbos 1990], [Rumelhart et al. 1986]

and [Williams & Zipser 1995].

3.6.3 Real-Time Recurrent Learning

The RTRL algorithm does not require error propagation. All the information

necessary to compute the activity gradient is collected as the input stream is

presented to the network. This makes a dedicated training interval obsolete.

The algorithm comes at signi�cant computational cost per update cycle, and

the stored information is non-local. But the memory required depends only

on the size of the network.

Following the notation from the previous section, we will now de�ne for

the network units k ∈ U , i ∈ U and j ∈ U ∪ I, and the time steps t0 ≤ t ≤ t1.

The training objective is to minimise the overall network error, which is given

by Equations 3.4, 3.5 and 3.6. The overall network error at time step t is

E(t) =
1

2

∑
k∈U

(dk(t)− yk(t))
2.

We conclude from Equation 3.4 that the gradient of the total error is also

the sum of the gradient for all previous time steps and the current time step:

∇wEtotal(t0, t+ 1) = ∇wEtotal(t0, t) +∇wE(t+ 1).

During presentation of the time series to the network, we need to

accumulate the values of the gradient at each time step. Thus, we can also

keep track of the weight changes ∆wij(t). After presentation, the overall

weight change for wij is then given by

∆wij =

t1∑
t=t0+1

∆wij(t). (3.8)

60 Chapter 3. Data Mining Methods

To get the weight changes we need to calculate

∆wij(t) = −
∂E(t)

∂wij

for each time step t. After expanding this equation via gradient descent and

by applying Equation 3.5, we �nd that

∆wij(t) = −
∑
k∈U

∂E(t)

∂yk(t)

∂yk(t)

∂wij

=
∑
k∈U

(dk(t)− yk(t))

(
∂yk(t)

∂wij

)
.

(3.9)

Since the error ek(t) = dk(t) − yk(t) is always known, we need to �nd a way

to calculate the second factor only. We de�ne the quantity

pkij(t) =
∂yk(t)

∂wij

, (3.10)

which measures the sensitivity of the output of unit k at time t to a small

change in the weight wij, in due consideration of the e�ect of such a change in

the weight over the entire network trajectory from time t0 to t. The weight wij

does not have to be connected to unit k, which makes the algorithm non-local.

Local changes in the network can have an e�ect anywhere in the network.

In RTRL, the gradient information is forward-propagated. Using

Equation 3.1, and analogous to Equations 3.2 and 3.3, the output yi(t+1) at

time step t+ 1 is given by

yi(t+ 1) = fi(neti(t)) (3.11)

with the weighted input

neti(t) =
∑
j

wijxj(t). (3.12)

By di�erentiating Equations 3.10, 3.11 and 3.12, we can calculate results

3.6. Recurrent Neural Networks 61

for all time steps ≥ t+ 1 with

pkij(t+ 1) =
∂yk(t+ 1)

∂wij

=
∂

∂wij

[
fk

(∑
l∈U

wklxl(t)

)]

= f ′
k(yk(t))

[∑
l∈U

wkl
∂xl(t)

∂wij

+
∑
l∈U

∂wkl

∂wij

xl(t)

]

and using Equation 3.10 and that after labelling the Kronecker delta with

δik =

1 if i = k

0 if otherwise,

we �nally get

pkij(t+ 1) = f ′
k(yk(t))

[∑
l∈U

wklp
l
ij(t) + δikxj(t)

]
. (3.13)

Assuming that the initial state of the network has no functional

dependency on the weights, the derivative for the �rst time step is

pkij(t0) =
∂yk(t0)

∂wij

= 0. (3.14)

Knowing the value for time t0 from Equation 3.14, we can now calculate the

quantities pkij for the �rst and all subsequent time steps using Equation 3.13.

Combining these values with the error vector e(t) for that time step, using

Equation 3.9, we can �nally calculate the negative error gradient 5wE(t).

The �nal weight change for wij can be calculated using Equations 3.9 and 3.8.

A more detailed description of the RTRL algorithm is given in [Williams

& Zipser 1989] and [Williams & Zipser 1995].

3.6.4 The Vanishing Error Problem

Standard RNN cannot bridge more than 5�10 time steps. Error signals tend

to either blow-up or vanish. Blown-up error signals lead straight to oscillating

weights, whereas with a vanishing error, learning takes an unacceptable

62 Chapter 3. Data Mining Methods

amount of time, or does not work at all.

Given a fully recurrent neural network with an n-tuple of non-input units

U , the local error signal that occurs at any chosen output-layer neuron k ∈ U ,

at time-step t, is propagated back through time for t−s time-steps, with s < t

to an arbitrary neuron v. This causes the error to be scaled by the following

factor:

∂δv(s)

∂δk(t)
=

f ′
v(netv(t− 1))wkv if t-s=1,

f ′
v(netv(s))

(∑n
l=1

∂δl(s+1)
∂δk(t)

wlv

)
if t-s>1

To solve the above equation, we unroll it over time. For s < τ < t, let lτ

be the index of a non-input-layer neuron in one of the replicas in the unrolled

network at time τ . Now, by setting ls = v and lt = k, we can solve the

equation through proof by induction:

∂δv(s)

∂δk(t)
=

n∑
lt−1=1

...
n∑

ls−1=1

(
wltlt−1

(
s+1∏

τ=t−1

f ′
lr(netlr(τ)wlrlr−1

)
f ′
ls(netls(s))

)
(3.15)

By using the next equation, we can show that if the local error vanishes,

the global error also vanishes:

∑
k∈O

∂δv(s)

∂δk(t)

where O is the set of output units.

Observing Equation 3.15, it follows that if

|f ′
lτ (netlτ (τ))wtτ lτ−1 | > 1 (3.16)

for all τ , then the product will grow exponentially with t − s − 1. The

error blows-up, and con�icting error signals arriving at neuron v can lead

to oscillating weights and unstable learning. If now

|f ′
lτ (netlτ (τ))wlτ lτ−1 | < 1 (3.17)

for all τ , then the product decreases exponentially with t − s − 1. In this

case, the error vanishes and nothing can be learned within an acceptable time

3.7. LSTM Recurrent Neural Networks 63

period.

A more detailed theoretical analysis of the problem with long-term

dependencies is presented in [Hochreiter et al. 2001]. The paper also brie�y

outlines several proposals on how to address this problem.

3.7 LSTM Recurrent Neural Networks

One solution that addresses the vanishing error problem is a gradient-based

method called long short-term memory (LSTM) published by [Hochreiter &

Schmidhuber 1996], [Hochreiter & Schmidhuber 1997], [Gers et al. 1999] and

[Gers et al. 2002]. LSTM can learn how to bridge minimal time lags of more

than 1,000 discrete time steps. The solution uses constant error carousels

(CECs), which enforce a constant error �ow within special cells. Access to

the cells is handled by multiplicative gate units, which learn when to grant

access.

3.7.1 Constant Error Carousel

The local error back �ow of a single cell j at a single time-step t follows from

Equation 3.7 and is given by

δj(t) = f ′
j(netj(t))wjjδj(t+ 1)

with the weight wjj, which connects the cell to itself. It follows from

Equations 3.16 and 3.17 that, in order to ensure a constant error �ow through

cell j, we need to have

|f ′
j(netj)(t))wjj| = 1.0.

and by integration we get

fj(netj(t)) =
netj(t)

wjj

.

From this, we learn that fj must be linear, and that j's activation must remain

constant:

yj(t+ 1) = fj(netj(t+ 1))fj(wjjyj(t)) = yj(t).

64 Chapter 3. Data Mining Methods

This is ensured by using the identity function fj : fj(x) = x, ∀x, and by

setting wjj = 1.0. CECs are the central feature of LSTM where short-term

memory storage is achieved for extended periods of time.

3.7.2 Memory Cells

In the absence of new inputs to the cell, we now know that the CEC's back�ow

remains constant. However, as part of a neural network, the CEC is not only

connected to itself, but also to other units in the neural network. We need

to take these additional weighted inputs and outputs into account. Incoming

connections to neuron j can have con�icting weight update signals, because

the same weight is used for storing and ignoring inputs. For weighted output

connections from neuron j, the same weights can be used to both retrieve j's

contents and prevent j's output �ow to other neurons in the network.

To address the problem of con�icting weight updates, LSTM extends the

CEC with input and output gates connected to the network input layer and

to other memory cells. This results in a more complex LSTM unit, called a

memory cell; its standard architecture is shown in Figure 3.15.

The input gates, which are simple sigmoid threshold units, with an

activation function range of [0, 1], control the signals from the network to the

memory cell by scaling them appropriately; when the gate is closed, activation

is close to zero. Additionally, these can learn to protect the contents stored

in j from disturbance by irrelevant signals. The activation of a CEC by the

input gate is de�ned as the cell state. The output gates can learn how to

control access to the memory cell contents, which protects other memory cells

from disturbances originating from j. So we can see that the basic function

of multiplicative gate units is to either allow or deny access to constant error

�ow through the CEC.

3.7.3 Memory Blocks

In an LSTM network, all units in the hidden layer are placed within new

central units�so-called memory blocks. Each memory block contains at least

one memory cell containing regulating gates to control incoming and outgoing

information �ow. Each memory cell has its own CEC to ensure a constant

3.7. LSTM Recurrent Neural Networks 65

y =s ycc out

output gating

c

input squashing

w

w

wc

cnet

g(net)
c

out

in

y

y

out

in

net

net

out

in
input gating

memorisingcc

ing(net) y

s = s + CEC
1.0

Figure 3.15: A standard LSTM memory cell with a recurrent self-connection
(CEC) and weight of `1'. The state of the cell is denoted as sc. Read and write
access is regulated by the input gate, yin, and the output gate, yout. The internal cell
state is calculated by multiplying the result of the squashed input, g, by the result of
the input gate, yin, and then adding the state of the last time step, sc(t−1). Finally,
the cell output is calculated by multiplying the cell state, sc, by the activation of
the output gate, yout.

error �ow through the cell, and all memory cells within a memory block share

the same input and output gate. LSTM recurrent neural networks can be

equipped with several such memory blocks.

3.7.4 The Forward Pass

We de�ne discrete time steps in the form t = 1, 2, 3, Each time step has

a forward pass and a backward pass. In the forward pass, the update of

all activations and states are calculated, whereas in the backward pass, the

calculation of the error signals for all weights is performed. The indexm refers

to the source units. Let cvj be the v-th memory cell in the j-th memory block,

and wlm be a weight connecting unit m to unit l.

66 Chapter 3. Data Mining Methods

The internal state of a standard LSTM memory cell is updated according

to its current state sc and three sources of external input: Input gate netin;

output gate netout; and the input of the standard memory cell netcvj .

The activation of the input gate yin is computed as

yinj
(t) = finj

(netinj
(t)) (3.18)

with the input gate input

netinj
(t) =

∑
m

winjmym(t− 1) (3.19)

and the activation of the output gate yout respectively

youtj(t) = foutj(netoutj(t)) (3.20)

with the output gate input

netoutj(t) =
∑
m

woutjmym(t− 1) (3.21)

where the index m refers to the feeding units.

The results of the gates are scaled, using a non-linear squashing function,

f(x) =
1

1 + e−x
(3.22)

so that they are within the range [0, 1]. Thus, the input for the memory cell

will only be able to pass if the signal at the gate is su�ciently close to `1'.

The cell input netc, passed at time t from the previous network layer, is

computed as

netcvj (t) =
∑
m

wcvjm
ym(t− 1). (3.23)

To calculate the internal state sc(t) of the memory cell, the squashed input

is multiplied by the result of the input gate, and the state of the last time

3.7. LSTM Recurrent Neural Networks 67

step sc(t− 1) is then added. The corresponding equation is

scvj (t) =

0 if t = 0

scvj (t− 1) + yinj
(t)g(netcvj (t)) if t > 0

(3.24)

with the optional non-linear squashing function for the cell input

g(x) =
4

1 + e−x
− 2 (3.25)

which, in this case, scales the result to the range [−2, 2].
The cell output yc is now calculated by multiplying the cell state sc by the

activation of the output gate yout:

ycvj (t) = youtj(t)scvj (t). (3.26)

Assuming a layered, recurrent neural network with standard input,

standard output and hidden layer consisting of memory blocks, the activations

for the output units k are �nally computed as

yk(t) = fk(netk(t)) (3.27)

with

netk(t) =
∑
m

wkmym(t− 1). (3.28)

where we can again use the logistic sigmoid in Equation 3.22 as a squashing

function fk.

3.7.5 Forget Gates

The self-connection in a standard LSTM network has a �xed weight set to `1'

in order to preserve the cell state over time. Unfortunately, the cell states sc

tend to grow linearly during the progression of a time series presented in a

continuous input stream. The main negative e�ect is that the entire memory

cell loses its memorising capability, and begins to function like an ordinary

RNN network neuron.

68 Chapter 3. Data Mining Methods

By manually resetting the state of the cell at the beginning of each

sequence, the cell state growth can be limited. But this is not practical for

continuous input, where there is no distinguishable end, or subdivision is very

complex and error prone.

To address this problem, [Gers et al. 1999] suggested that an adaptive

forget gate could be attached to the self-connection. Forget gates can learn

to reset the internal state of the memory cell when the stored information

is no longer needed. To this end, we replace the weight `1.0' of the self-

connection from the CEC with a multiplicative, forget gate activation yϕ,

which is computed using a similar method as for the other gates:

yϕj
(t) = fϕj

(netϕj
(t)) (3.29)

with

netϕj
(t) =

∑
m

wϕjmym(t− 1) (3.30)

using the squashing function in Equation 3.22, with a range [−1, 1].

The updated equation for calculating the internal cell state sc for t > 0

and scvj (0) = 0 is

scvj (t) = scvj (t− 1) yϕj
(t)︸ ︷︷ ︸

=1 without
forget gate

+yinj
(t)g(netcvj (t)) (3.31)

using the squashing function in Equation 3.25, with a range [−2, 2]. The

extended forward pass is given simply by exchanging Equation 3.24 for

Equation 3.31.

The bias weights of input and output gates is initialised with negative

values, and the weights of the forget gate are initialised with positive values.

From this, it follows that at the beginning of training, the forget gate

activation will be close to `1.0'. The memory cell will behave like a standard

LSTM memory cell without a forget gate. This prevents the LSTM memory

cell from forgetting, before it has actually learned anything.

3.7. LSTM Recurrent Neural Networks 69

3.7.6 Backward Pass

LSTM learning uses a hybrid approach, combining customised versions

of backpropagation through time with real-time recurrent learning. The

standard backpropagation through time is used for output units. The output

gates use a truncated and slightly modi�ed version of backpropagation through

time. The input gate, the optional forget gate, and the weights of memory

cells use a truncated version of real-time recurrent learning. In this context,

truncation cuts o� the error once it has leaked out of the cell or gate, although

it still serves to change the incoming weights. Thus, the continuous error �ow

is limited to the constant error carousel.

Following the notation used in previous sections, and using Equations 3.4,

3.5 and 3.6, the overall network error at time step t is

E(t) =
1

2

∑
k∈U

(dk(t)− yk(t)︸ ︷︷ ︸
ek(t)

)2,

using the squared error as an objective function and where ek(t) is the

externally injected error.

Following and expanding Equation 3.9 via gradient descent, we can

calculate the weight changes ∆wlm(t) connecting unit m to unit l, using a

learning rate α as

∆wlm(t) = −α
∂E(t)

∂wlm

= α
∑
k∈U

ek(t)

(
∂yk(t)

∂wlm

)
= α

∑
k

∑
l′

ek(t)
∂yk(t)

∂yl′(t)

∂yl′(t)

∂netl′(t)

∂netl′(t)

∂wlm

.

Using the Kronicker delta we then get

∆wlm(t) = α
∑
k

∑
l′

ek(t)
∂yk(t)

∂yl′(t)

∂yl′(t)

∂netl′(t)

(
δl′lym(t− 1) +

∂netl′(t)

∂ym(t− 1)

)
.

(3.32)

When leaving the memory block, the errors are truncated by setting the

derivatives ∂netl′ (t)
∂ym(t−1)

tr
= 0 for l′ ∈ {ϕ, in, cvj}. Therefore the sum for unit l′

70 Chapter 3. Data Mining Methods

vanishes. After error truncation, Equation 3.32 is reduced to

∆wlm(t)
tr
= α

∑
k∈U

ek(t)
∂yk(t)

∂yl(t)

∂yl(t)

∂netl(t)
ym(t− 1)

= α
∂yl(t)

∂netl(t)

(∑
k

∂yk(t)

∂yl(t)
ek(t)

)
︸ ︷︷ ︸

=:δl(t)

ym(t− 1)
(3.33)

where
tr
= indicates that the error is truncated. Truncation is used to calculate

the derivatives of the output gates δoutj and the output units δk.

For output unit weights and output gate weights, we use BPTT to calculate

the weight changes. For an arbitrary output weight wkm(t), connecting unitm

to output unit k, the sum in Equation 3.33 reduces to
∑

k
∂yk(t)
∂yk(t)

ek(t) = ek(t).

Then, the weight change is given by

∆wkm(t) = αδk(t)ym(t− 1). (3.34)

with

δk(t)
tr
=

∂yk(t)

∂netk(t)
ek(t)

= f ′
k(netk(t))ek(t)

(3.35)

where the derivatives are given by di�erentiating Equation 3.27.

For the output gate, the weight changes of a connection from an output

gate of an arbitrary memory block j to a unit m is given by

∆woutjm(t) = αδoutj(t)ym(t). (3.36)

with

δoutj(t)
tr
=

∂youtj(t)

∂netoutj(t)

(∑
k

∂yk(t)

∂youtj(t)
ek(t)

)

= f ′
outj

(netoutj(t))

 Sj∑
v=1

scvj (t)
∑
k

wkcvj
δk(t)

 (3.37)

where v indexes the memory cells within a block j with Sj cells. The

derivatives are given by di�erentiating Equations 3.20, 3.26 and 3.27.

3.7. LSTM Recurrent Neural Networks 71

To calculate the weight changes for connections to the memory cell, input

gate and forget gate, we use a di�erent approach. Instead of truncated BPTT,

we use a variant of RTRL. Analogous to Equations 3.9 and 3.32, but splitting

the gradient in a di�erent way, we get the following equations

∆wlm(t) = −α
∂E(t)

∂wlm

tr
= −α ∂E(t)

∂scvj (t)︸ ︷︷ ︸
=:−escv

j
(t)

∂scvj (t)

∂wlm

= αescv
j
(t)

(
∂scvj
∂wlm

) (3.38)

with the internal state error escv
j
of each memory cell

escv
j
:
tr
=

∂E(t)

∂scvj (t)
=

∂E(t)

∂yk(t)

∂yk(t)

∂ycvj

∂ycvj
∂scvj

=
∂ycvj
∂scvj︸︷︷︸

=youtj (t)scvj
(t)

∑
k

∂yk(t)

∂ycvj ek(t)︸ ︷︷ ︸
=wkcv

j
δk(t)

= youtj(t)scvj (t)

(∑
k

wkcvj
δk(t)

)
.

To calculate the remaining partial derivative
∂scv

j

∂wlm
from Equation 3.38, we

di�erentiate the internal state update in Equation 3.31 and obtain a sum of

the following four terms:

∂scvj
∂wlm

=
∂scvj (t− 1)

∂wlm︸ ︷︷ ︸
6=0 for all l∈{ϕ,in,cvj }

+ yinj
(t)

∂g(netcvj (t)

∂wlm︸ ︷︷ ︸
6=0 for l=cvj (cell)

+

g(netcvj (t)
∂yinj

(t)

∂wlm︸ ︷︷ ︸
6=0 for l=in (input gate)

+ scvj (t− 1)
∂yϕj

(t)

∂wlm︸ ︷︷ ︸
6=0 for l=ϕ (forget gate)

.

(3.39)

After di�erentiation, using the forward pass Equations 3.24, 3.18

and 3.29 for g, yin and yϕ, and substituting unresolved partials, we can split

Equation 3.39 into three separate equations.

72 Chapter 3. Data Mining Methods

For the cell we get:

∂scvj (t)

∂wcvjm

tr
=

∂scvj (t− 1)

∂wcvjm

yϕj
(t) + g′(netcvj (t))yinj

(t)ym(t− 1), (3.40)

for the input gate we get:

∂scvj (t)

∂winjm

tr
=

∂scvj (t− 1)

∂winjm

yϕj
(t) + g(netcvj (t))f

′
inj

(netinj
(t))ym(t− 1), (3.41)

and for the forget gate respectively, we get:

∂scvj (t)

∂wϕjm

tr
=

∂scvj (t− 1)

∂wϕjm

yϕj
(t) + scvj (t− 1)f ′

ϕj
(netϕj

(t))ym(t− 1). (3.42)

Since the initial state of the network is independent of the weights, we also

need to set the �rst time step to zero:

∂scvj (t = 0)

∂wlm

= 0 for l ∈ {ϕ, in, cvj}. (3.43)

We can now insert the partials of Equations 3.40, 3.41, 3.42 and 3.43

into Equation 3.32 in order to obtain the full equations for the corresponding

weight updates at each time step. For the weight deltas of the cell input

weights, we need to calculate

∆wcvjm
(t) = αescv

j
(t)

(
∂scvj
∂wcvjm

)
(3.44)

and for the input and forget gate weights, summed over all contributions from

all cells in each block, we need to calculate

∆wlm(t) = α

Sj∑
v=1

escv
j
(t)

(
∂scvj
∂wlm

)
for l ∈ {ϕ, in}. (3.45)

A more detailed version of the LSTM backward pass with forget gates is

described in [Gers et al. 1999].

3.7. LSTM Recurrent Neural Networks 73

3.7.7 Peephole Connections

In standard LSTM, gates do not have direct access to the internal cell state.

They are connected only to the input units and the cell outputs. As long as

the output gate is closed, the output of the cell is close to zero. Until the

output gate starts to open, none of the gates have any information about the

state of the CEC they should control.

To address this problem, we can add weighted connections from the

internal cell state to all gates within a memory block. These connections

are labelled as peephole connections which allow gates to learn to protect the

internal cell state from unwanted inputs during the forward pass, whereas in

the backward pass, they learn to protect the internal cell state from unwanted

error signals.

The gates and the internal cell state need to be updated in two separate

phases. In the �rst phase, we need to update input gate yin, forget gate yϕ,

and cell state sc, in this speci�c order. Then, in the second phase, we �nally

update the output gate yout.

To enable peephole connections, in the forward pass we change the

Equation 3.19 for input gate activation as follows:

netinj
(t) =

∑
m

winjmym(t− 1) +

Sj∑
v=1

winjcvj
scvj (t− 1)︸ ︷︷ ︸

=0 without peepholes

, (3.46)

the Equation 3.30 for forget gate activation as follows:

netϕj
(t) =

∑
m

wϕjmym(t− 1) +

Sj∑
v=1

wϕjcvj
scvj (t− 1)︸ ︷︷ ︸

=0 without peepholes

, (3.47)

and the Equation 3.21 for output gate activation as follows:

netoutj(t) =
∑
m

woutjmym(t− 1) +

Sj∑
v=1

woutjcvj
scvj (t)︸ ︷︷ ︸

=0 without peepholes

. (3.48)

74 Chapter 3. Data Mining Methods

We also require modi�cations in the LSTM backward pass in order to

use peephole connections. Analogous to Equations 3.41 and 3.42, the partial

derivatives for peephole connections to input and forget gate are computed

using the following equations:

∂scvj (t)

∂winjcvj

tr
=

∂scvj (t− 1)

∂winjcvj

yϕj
(t) + g(netcvj (t))f

′
inj

(netinj
(t))scvj (t− 1) (3.49)

∂scvj (t)

∂wϕjcvj

tr
=

∂scvj (t− 1)

∂wϕjcvj

yϕj
(t) + scvj (t− 1)f ′

ϕj
(netϕj

(t))scvj (t− 1). (3.50)

As in Equations 3.36 and 3.45, the changes to the peephole connection

weights are calculated as follows:

∆woutjcvj
(t) = αδoutj(t)scvj (3.51)

∆wljcvj
(t) = α

Sj∑
v=1

escv
j
(t)

(
∂scvj
∂wljcvj

)
for l ∈ {ϕ, in}. (3.52)

In the updated backward pass, the error signals are not propagated back

from the gates through the peephole connections to the internal cell.

A standard LSTM memory cell, extended by a forget gate and peephole

connections, is shown in Figure 3.16.

Figure A.9 on Page 192 shows an LSTM network with two memory blocks,

each of which contain two cells. The network input layer is fully connected to

the hidden layer and the output layer. The connections to the output layer

are so-called shortcuts. The output of the hidden layer is fully connected to

the output layer and back to the inputs of the hidden layer. The inputs of the

hidden layer are the cell's inputs and the three gate types input, forget and

output. The memory cells are likewise extended with peephole connections.

In our experiments using peephole connections, we did not experience

outstanding performance improvements. Nevertheless, we decided to use

them. The updated forward and backward pass for peephole LSTM is

described in more detail in [Gers et al. 2002].

3.8. Conclusions 75

y =s ycc out

output gating

c

input squashing

w

w

w

wc

cnet

g(net)
c

out

in

ϕ ϕ

y

y

y

out

in

ϕ

net

net

net

out

in

ϕ

input gating

cell output

cell input

and forgetting
memorising

cc

in

s = s y +

g(net) y

CEC

peephole connections

Figure 3.16: A standard LSTM memory cell with forget gate and peephole
connections. The state of the cell is denoted as sc. Read and write access is regulated
by the input gate, yin, and the output gate, yout. The gates and the internal cell
state need to be updated in a speci�c order. Firstly, we need to update input gate,
yin, forget gate, yϕ, and cell state, sc. Then, we �nally update the output gate, yout.
For the forward pass, we need the equations for input gate activation 3.19, forget
gate activation 3.30, and output gate activation 3.21.

3.8 Conclusions

In this chapter, we learned about �ve static and two dynamic classi�ers.

All static classi�ers presented have strong classi�cation capabilities

([Mitchell 1997] and [Han & Kamber 2006]), but are not well-suited to time

series prediction. To address temporal learning, we require dynamic classi�ers,

such as recurrent neural networks.

The static classi�ers covered were decision trees ([Quinlan 1986] and

[Quinlan 1993]), naïve Bayes ([John & Langley 1995]), Bayesian networks

([Heckerman et al. 1995]), feed-forward neural networks ([Rumelhart

et al. 1994]) and support vector machines ([Boser et al. 1992] and [Cortes

76 Chapter 3. Data Mining Methods

& Vapnik 1995]).

The dynamic classi�ers presented were recurrent neural networks

([Rumelhart et al. 1986], [Williams & Zipser 1995], [Williams & Zipser 1989],

[Williams & Zipser 1995], and [Hochreiter et al. 2001]) and, in particular, long

short-term memory (LSTM [Hochreiter & Schmidhuber 1996], [Hochreiter &

Schmidhuber 1997], [Gers et al. 1999] and [Gers et al. 2002]) recurrent neural

networks .

In this chapter, we covered the derivation of LSTM in detail, summarising

the most relevant literature. Speci�cally, we highlighted the vanishing error

problem, which is a serious shortcoming of RNNs. LSTM provides a possible

solution to this problem by introducing a constant error �ow through the

internal states of special memory cells. In this way, LSTM is able to tackle

long time-lag problems, bridging time intervals in excess of 1,000 time steps.

Finally, we introduced two LSTM extensions that enable LSTM to learn self-

resets and precise timing. With self-resets, LSTM is able to free memory of

irrelevant information.

In the next chapter, we will delve into the KDD Cup '99 benchmark

dataset, which will be applied to all classi�ers presented and extract small

subsets of salient features from the full feature set.

Chapter 4

Extracting Salient Features

for IDS

Contents

4.1 Introduction . 78

4.2 Performance Metrics 80

4.2.1 Measuring IDS Performance 80

4.2.2 Simple Performance Measures 82

4.2.3 The Mean Squared Error 83

4.2.4 ROC Analysis . 84

4.2.5 Comparison of Methods 86

4.3 Attribute Search Strategies 87

4.3.1 Forward Selection and Backward Elimination 89

4.3.2 Information Gain and Decision Trees 89

4.3.3 Domain Knowledge . 90

4.4 DARPA and KDD Cup '99 Datasets 90

4.5 Extracting Salient Features 95

4.5.1 Custom Data Preparation and Preprocessing 97

4.5.2 Visualisation of Class Distributions 98

4.5.3 Feature Extraction using Decision Tree Pruning 101

4.6 Minimal Sets for All Attacks 104

4.6.1 The 11 Feature Minimal Set 105

4.6.2 The 8 and 4 Feature Minimal Sets 105

4.7 Minimal Sets for Individual Attacks 106

4.7.1 Detecting Network Probes 109

4.7.2 Detecting `dos' Attacks 110

4.7.3 Detecting `r2l' Attacks 112

4.7.4 Detecting `u2r' Attacks 112

4.8 Conclusions . 114

78 Chapter 4. Extracting Salient Features for IDS

4.1 Introduction

In this chapter, we cover the extraction and preprocessing of important

features. These are essential tasks for data mining and intrusion detection.

From the perspective of data mining, dimension reduction aims to �nd

the set of minimal features that best classi�es the training data. Some

attributes may contain redundant information, while others may contain

information suggesting false correlations; either type can hinder correct

classi�cation. Additionally, unnecessary features add to computation time.

To our knowledge, no general theory exists that captures the relationship

between di�erent attacks and provided features.

[Amaldi & Kann 1998] show that the time complexity of the feature

selection problem (also referred to as dimension reduction) is NP-hard. From

this, we conclude that if the number of variables becomes too large, the search

quickly becomes computationally intractable. A review of alternative search

strategies is presented by [Kohavi & John 1997], [Dash & Liu 1997] and [Chen

et al. 2006].

From the perspective of network intrusion detection systems, there are

strong reasons to reduce the number of collected features and choose features

that can easily be extracted from a high-speed data stream. Connections in

today's local area networks forward packets at tens of gigabits per second

(using the minimal frame size of 64 bytes, we can transfer up to 14.8 million

frames per second in 10-Gigabit Ethernet networks); simply put, even the

monitoring of data at 10 Gbps is a major challenge.

In order to perform in-depth packet analysis, it is essential to perform

massive data reduction in order to obtain an amount that can actually be

processed further. This is extremely important if the objective is real-time

detection.

Tra�c information reduction can be accomplished in various ways. Prior

to network data collection, for example, we can apply �lters that ignore certain

types of tra�c; but although this may leave only tra�c considered potentially

interesting, �ltering might also remove important data.

Observed tra�c can also be compressed into connection records that

summarise the essential information about individual sessions between two

4.1. Introduction 79

parties; each connection record contains preprocessed features; this kind of

compression was performed for the KDD Cup '99 data set.

The so-called basic (or base) features of the KDD Cup '99 dataset require

only the header information from IP packets and TCP/UDP/ICMP segments,

and the total size of IP packets. Extraction of header information is much

less complex than the extraction of content features.

In-depth packet data analysis requires the computationally demanding

and memory-intensive reassembling of data streams. Furthermore, the data

analysis frequently requires domain knowledge, which needs to be provided

by a human expert. Extraction and analysis of content features is unlikely to

be cost-e�ective on a large scale in high-speed network environments.

At this point, we note that the connection records in the KDD Cup '99

dataset are outdated, and are neither representative of current network tra�c

nor contain attacks currently relevant in today's computer networks. But it

is still the only fully labelled intrusion detection dataset available of a decent

size; and we think it is still relevant in evaluating the performance of machine

learning algorithms in the �eld of intrusion detection.

In the rest of this chapter, we �rst discuss relevant performance metrics

applied to the selected classi�ers, then we discuss the feature set reduction

techniques applied to the dataset. Finally, we introduce and dive into the

details of the DARPA and KDD Cup '99 datasets.

After a short literature review of related work published on feature

reduction of the KDD Cup '99 datasets, we present our contributions. Using

a custom network feature preprocessing framework, and custom-built training

sets derived from the KDD Cup '99 datasets, we present a framework that

supports a data mining and network security expert in minimal feature

set extraction. This process is supported by detailed visualisation and

examination of class distributions.

The feature reduction process applied is based on decision tree pruning.

Finally, we conclude by presenting a number of minimal feature sets for

detecting all attacks and individual attacks, using one-classi�er training with

very few features.

80 Chapter 4. Extracting Salient Features for IDS

4.2 Performance Metrics

For a meaningful comparison of the performance of di�erent network intrusion

systems, it is necessary to at least agree on training data, testing data and

what performance metrics are applied.

A model built by a classi�er from given examples is only an approximation

of the true model if we can assume the data used is valid. To evaluate how

closely the built model complies with the true model, we need to divide the

available examples into training data and testing data. Firstly, the training

data is used to build the model, and then the model is evaluated using the

test data. Based on the fact that the labels of the test data are known, we

can apply a number of performance metrics.

An overview of common performance metrics for machine learning applied

to computer security is provided by [Maloof 2006]. For a comprehensive

introduction to performance metrics for machine learning, see [Han &

Kamber 2006].

4.2.1 Measuring IDS Performance

Intrusion detection systems generate two types of misclassi�cation errors:

False positives and false negatives. A false positive wrongly reports an attack,

and a false negative fails to report an occurring attack. The corresponding

performance metrics are the false positive rate and the false negative rate.

For the evaluation of IDS systems, and for the purpose of comparison

between di�erent systems, the crossover error rate can additionally be applied

as a third performance metric. The crossover error rate is the portion of

misclassi�cation errors when the sensitivity of the system is adjusted in such

a way that the false positive rate and the false negative rate are equal (see

Figure 4.1).

In the �eld, most commercial IDS products have a strong focus on reducing

the number of false positives. This is due to the fact that alerts need to be

manually analysed and �ltered by a security expert. The number of alerts from

an IDS system can easily reach thousands of events per day when monitoring

large infrastructures. Assuming that only 10 per cent of all alerts are false

4.2. Performance Metrics 81

rate
false positive

rate

misclassifications

crossover error rate

fr
eq

ue
nc

y

sensitivity

false negative

Figure 4.1: The crossover error rate can be used as a performance metric for the
evaluation of intrusion detection systems. It requires the IDS to be adjusted in such
a way that the false positive rate and the false negative rate are equal.

positives, such a system is already rendered unusable if maintained by a single

security manager.

IDS security managers are forced to tune the sensitivity of the system's

detection and reporting algorithms to keep the number of generated alerts

by the IDS manageable. But the downside of reducing the number of events

produced is that reliability of the IDS system is lowered. It is the job of the

security manager to tune the IDS such that the number of generated alerts

and reliability are appropriate for the monitored environment.

82 Chapter 4. Extracting Salient Features for IDS

In highly sensitive environments, such as military applications, a large

number of false positives might be acceptable if this ensures that more

detectable intrusions are logged. In an academic environment with very

limited human resources, a low percentage of false positives might be essential

in order to guarantee that all events can be manually analysed.

4.2.2 Simple Performance Measures

For two-class problems, the result of a classi�cation can be either predicted

correctly or incorrectly. This yields four di�erent conditions:

• (a) true positive�model correctly predicts positive

• (b) false negative (type II error)�model incorrectly predicts negative

• (c) false positive (type I error)�model incorrectly predicts positive

• (d) true negative�model correctly predicts negative

A confusion matrix shows the predicted and actual classi�cations. The

size of a confusion matrix is n× n, where n is the number of di�erent classes.

The two types of errors, false positive and false negative, can have di�erent

costs. If the costs of misclassi�cation are known with a cost matrix, we can

calculate the average cost per test example for a given model. The size of the

cost matrix is equal to the size of the confusion matrix; it speci�es the costs

associated with the di�erent error conditions. All elements of the confusion

matrix are multiplied by the corresponding value of the cost matrix, and the

total cost of a model is the sum of all these products. The average cost is the

total cost divided by the total number of classi�cations. The confusion and

cost matrices shown in Tables 4.1 and 4.2 are for a two-class problem.

Table 4.1: Confusion matrix

predicted

ac
tu
al

positive negative
positive a b

negative c d

Table 4.2: Cost matrix

predicted

ac
tu
al

positive negative
positive 0 1

negative 4 0

4.2. Performance Metrics 83

From the counts of the four conditions, we can calculate the following

simple performance metrics:

• sensitivity, detect(ion) rate (DR) or true positive rate (TPR): a
a+b

• false negative rate (FNR): b
a+b

• false alarm rate (FAR) or false positive rate (FPR): c
c+d

• speci�city or true negative rate (TNR): d
c+d

• precision a
a+c

Sensitivity is the portion of positive tuples that are correctly predicted

as positive. The false negative rate is the portion of positive tuples that are

wrongly predicted as negative. The false positive rate is the portion of negative

tuples wrongly predicted as positive. Speci�city is the portion of negative

tuples that are correctly predicted as negative. Additionally, precision is the

probability that an instance is correctly classi�ed.

From sensitivity and speci�city we can derive accuracy (ACC):

• ACC: a+d
a+b+c+d

Accuracy is the portion of test results that the model predicts correctly.

A classi�er with high accuracy will ideally have most of the tuples presented

along the diagonal of the confusion matrix.

4.2.3 The Mean Squared Error

For numeric prediction tasks, the mean squared error (MSE) is another simple

method that can be used. The mean squared error quanti�es the amount by

which an estimator di�ers from the targeted value.

The squared error between the value yi and the predicted value y′i is

(yi − y′i)
2. The MSE of a dataset is the average of the sum of all squared errors

of each pattern. Given n patterns from the dataset, for the ith example, let

pi be the predicted value, and ai the actual value.

84 Chapter 4. Extracting Salient Features for IDS

The mean squared error of a given dataset is

MSE =
1

n

n∑
i=0

(ai − pi)
2

4.2.4 ROC Analysis

The receiver operating characteristic (ROC) analysis evaluates an algorithm

over a range of possible operational scenarios. An excellent introduction into

ROC analysis is provided by [Fawcett 2006].

The ROC graph is a two-dimensional plot of the false positive rate (x-

axis) of a model against its true positive rate (y-axis). A true positive rate

of unity and false positive rate of zero are indicators of perfect performance.

The lower-left point (0,0) on the graph represents a model with neither false

positive errors nor true positives. This model would always classify negative,

and never positive. The opposite point on the upper-right (1,1) represents a

model that always classi�es positive, and never negative. The point on the

upper-left (0,1) of the ROC graph represents a model that always classi�es

correctly.

4.2.4.1 Curve Generation

Discrete classi�ers, such as decision trees, generate a single-class decision for

every instance of a test set. For a given decision threshold, all classi�ed

instances yield one confusion matrix. In two-type classi�cation, each matrix

has exactly one true positive rate and one false positive rate. These two

produce a single point on the ROC graph. To generate an ROC curve, the

threshold is varied in n-steps from −∞ to +∞ producing n-points on the

ROC graph.

For probabilistic classi�ers, there is a more e�cient method of generating

the ROC curve. In contrast to discrete classi�ers, the results of probabilistic

classi�ers produce numeric values. Neural networks are probabilistic classi�ers

with target values in the range of [0, 1]. The target value represents the

probability that the observed instance is a member of a speci�c class, where a

higher value indicates a higher probability. Typically, a decision threshold of

4.2. Performance Metrics 85

0.5 is applied to the classi�er result to produce the decision. If the resulting

target value is above the threshold, the instance belongs to a speci�c class.

A value under the threshold is classi�ed as noise. Every threshold applied to

the target values produces its own confusion matrix and a di�erent point on

the ROC graph.

The resulting ROC curve of a successfully learned classi�er should look

like an inverted `L', with the corner pushing forward the upper-left of the

graph. Results similar to random guessing yield a diagonal line between (0,0)

and (1,1).

One important property of ROC curves is that they are insensitive to

changes in class distribution. Di�erent test sets, with changing proportions of

positive and negative instances, will generate the same graphs.

4.2.4.2 Area Under Curve

The area under curve (AUC) summarises the curve in a single value as a

measure of expected performance. The AUC value of a classi�er is a numerical

value in the range [0, 1]. It is equal to the probability that a randomly

chosen positive instance will be ranked higher than a randomly chosen negative

instance.

Various methods of estimating the AUC value exist; the most precise way

is to use a non-parametric method. The so-called trapezoidal rule involves

dividing the area under the curve into a number of trapezoids of equal

width. The area of each trapezium is estimated by replacing the upper-end

of each trapezium with a straight line. The AUC value is the sum of these

approximations.

No meaningful classi�er should have an AUC value below 0.5, which is

equivalent to random guessing. A model with perfect accuracy will have an

AUC value of 1.0. Depending on the shape of the ROC curves, it is possible

for a high AUC value of one classi�er to perform worse in a speci�c region

of the curve than a low AUC value of another classi�er. But in practice, the

AUC value performs very well.

86 Chapter 4. Extracting Salient Features for IDS

4.2.4.3 Multi-Class Problems

ROC analysis is much more complex when handling decision problems with

more than two classes. For handling n-classes, it is most common to break

the problem down into n two-class problems and produce a graph for every

class.

To calculate Multi-class AUC (MAUC) values, we need to sum the AUC

values weighted according to class prevalence of the n-classes:

AUCtotal =
∑
ci∈C

AUC(ci)× p(ci)

with AUC(ci) being the AUC value and p(ci) being the prevalence of class ci.

Unfortunately, the resulting MAUC value is now sensitive to class

prevalence in the test set. Di�erent class distributions in di�erent test sets

will generate di�erent MAUC values. This makes results di�cult to interpret

and compare.

4.2.5 Comparison of Methods

Accuracy and mean squared error are the most common performance metrics,

but simple measures are problematic. Accuracy does not provide information

about the performance per class�missing a positive or missing a negative

is treated as the same thing. If the majority of examples in a dataset

are negative, then a high accuracy might be due only to the exceptional

performance on these negative examples, and observing the true positive rate

may indicate that the performance on the positive examples is very poor.

[Provost et al. 1998] provide a more detailed discussion of why performance

evaluations using accuracy are problematic.

We need to satisfy certain conditions in order to apply simple performance

metrics. In the case of accuracy, this includes having an equal number of

examples in each class. For highly skewed data, where one class is much

larger than the other, these metrics are not very meaningful.

By contrast, it is a powerful strength of ROC analysis that it is independent

of class distribution in two-class problems. The curve remains the same despite

changes in the proportions of positive and negative examples.

4.3. Attribute Search Strategies 87

Of the three metrics�accuracy, MSE and AUC�AUC is the most suitable

measure of performance. Like accuracy and MSE, AUC provides a single

number as a summary of performance, but it is also independent of class

distribution. The drawbacks are that the computing of the AUC value requires

signi�cant resources, and that the result is not always intuitively understood.

The fact that summarising the ROC curve into a single number comes at the

cost of signi�cant information loss should also be taken into consideration.

4.3 Attribute Search Strategies

Feature selection is a method of obtaining a reduced presentation of the data

set. It can be broken down into the four phases of subset generation, subset

evaluation, stopping criteria and result validation, as suggested by [Dash &

Liu 1997].

During subset generation, we generate the subsets that are observed and

examined during the subset evaluation phase. Feature subset generation is

essentially a search through the space of suitable subsets. It has a speci�ed

starting point and an initially decided search strategy. It can start with no

features, all features, or with a random subset of features available. Depending

on the chosen starting point, features are iteratively added or removed. The

search strategy can be anything from an exhaustive search through all possible

subsets to a random selection of a limited number of candidates.

After the generation of each subset, the results are evaluated during the

subset evaluation phase and compared to the previous best result. Subsets

found to have superior results replace the previous best subset. The evaluation

criteria can be dependent or independent of the learning algorithm to which

the data is �nally applied.

The generation�evaluation loop continues until a matching stopping

criterion is reached, at which point the subset search is terminated. Suitable

stopping criteria can depend on the generation procedure or on the evaluation

function. Generation-procedure-dependent stopping criteria could be, for

example, a speci�ed number of features or a limited number of iterations

reached. A common evaluation-function-dependent stopping criterion is that

the addition or deletion of any feature does not create a better subset.

88 Chapter 4. Extracting Salient Features for IDS

In the result validation phase, we �nally con�rm the validity of the created

subset, and we compare the results to previous results. The whole feature

selection process is shown in Figure 4.2.

feature set

original
subset

goodness of
the subset

no yes

criterion
stopping

generation evaluation

validation

Figure 4.2: The feature selection process as suggested by [Dash & Liu 1997].
During subset generation, we generate the subsets that are observed and examined
in the subset evaluation phase. This process continues until a matching stopping

criterion is reached, at which point the subset search is terminated. Finally, the
validity of the result is con�rmed during result validation.

Neural networks prefer to process numeric values in a previously speci�ed

range (i.e. [−1, 1]). Most methods for the transformation of nominal features

having a great number of discrete values also increase the total number

of required input neurons, which signi�cantly increases computation time.

This makes it almost essential for these resource-intensive machine learning

methods to perform feature selection prior to training.

Starting from n attributes, there are 2n possible subsets. With an

increasing number of attributes, the exhaustive search over all attributes gets

very expensive. It is very common to use heuristic methods that only search

a reduced search space.

4.3. Attribute Search Strategies 89

4.3.1 Forward Selection and Backward Elimination

Examples of very straightforward search strategies are stepwise forward

selection, stepwise backward elimination, or a combination of both. In the

�rst, we start with an empty attribute set as the reduced set and add the best

attribute from the original attribute set. Then, at each subsequent iteration,

we add the best of the remaining attributes to the reduced set.

In stepwise backward elimination, we start with all attributes and stepwise

remove the worst attributes from the set. In a combined approach of stepwise

forward selection and stepwise backward elimination, we start with a reduced

set having a �xed number of promising attributes. In each round, we now

select the best attribute from the remaining attributes and remove the worst

from the reduced set.

One way to �nd either the best or worst attribute is to perform experiments

with a selected classi�er. The classi�er's performance is then compared to the

previous best performances. A decrease in performance is an indication of

the lack of an important feature. If the performance remains unchanged, or

increases after adding a feature, it is an indication that the observed feature

is unimportant or irrelevant.

4.3.2 Information Gain and Decision Trees

We can also rank features according to their importance. This helps

to determine irrelevant or less signi�cant attributes, which can then be

deleted �rst. But it needs to be considered that ranking assumes attribute

independence and, therefore, neglects possible interactions between features.

A typical evaluation measure suitable for ranking is information gain.

Information gain is the underlying statistical property of feature evaluation

used by decision trees. An observed feature with the highest information gain

is considered to be the most e�ective for classifying presented data for a given

class.

Decision tree classi�ers, such as C4.5, are themselves also well-suited to

attribute selection. In the tree-like structure constructed by the learning

algorithm, every node represents a test of an attribute. Attributes that the

algorithm assumes are irrelevant are not part of the tree. In most cases, the

90 Chapter 4. Extracting Salient Features for IDS

attributes used already represent a reduced subset.

Additionally, the selected attributes are in a hierarchical order. The

attribute tested by the node at the root of the tree is considered to be that

which best partitions the data into classes. The attributes tested by the nodes

in the last layer prior to the leaves are considered to be the worst attributes.

The decision tree classi�er and the information measure are described in

more detail in Section 3.2.

4.3.3 Domain Knowledge

Furthermore, it is advisable to use domain knowledge for feature selection.

Domain knowledge can be provided by an expert in order to remove

unimportant features. An investigation of the provided data can reveal non-

changing values of features or that noise and outliers devalue the quality of

certain features. Human experts can also exclude features that are known to

be irrelevant or that are prone to false correlations.

4.4 DARPA and KDD Cup '99 Datasets

The choice of training data available for machine learning in the �eld of

network intrusion detection systems is very limited. One of the few widely

used datasets are the DARPA datasets ([Lippmann et al. 2000a], [Lippmann

et al. 2000b]), which also happen to be one of the most comprehensive. They

are freely available from the Information Systems Technology Group (IST)

Web site, which is part of the MIT Lincoln Laboratory ([DARPA 2011]).

These datasets are called DARPA datasets because their generation was

sponsored by the Defense Advanced Research Projects Agency (DARPA ITO)

and the Air Force Research Laboratory (AFRL/SNHS).

Between 1998 and 2000, the MIT Lincoln Laboratory conducted the

DARPA Intrusion Detection Evaluation, which resulted in three scenario-

speci�c datasets. The two main datasets, collected in 1998 and 1999, provided

o�ine evaluation data based on network tra�c data and audit logs collected

from a simulation network.

The 1998 DARPA Intrusion Detection Evaluation network simulated an

4.4. DARPA and KDD Cup '99 Datasets 91

air force base local area network. Seven weeks of training data and two weeks

of testing data were collected. The total collected data contains more than 200

instances of 39 mostly network-based attack types embedded in background

tra�c similar to that of an air force base local area network.

All tra�c is either classi�ed as (`normal') or as one of various attack types.

The attack types are grouped into the four attack categories: denial-of-service

(`dos'), network probe (`probe'), remote-to-local (`r2l') and user-to-root (`u2r')

attacks. In addition, the data contains anomalous user behaviour, such as a

normal user acting like a privileged user. All attacks and tra�c types used

during the evaluation are shown in Table 4.3.

Table 4.3: Attacks and tra�c types which ran during the evaluation. All tra�c is
either classi�ed as `normal' or as one of various attack types. The attack types are
grouped into the four categories: denial-of-service (`dos'), network probes (`probe'),
remote-to-local (`r2l') and user-to-root (`u2r') attacks.

Solaris SunOS Linux Cisco
attacks Server internal internal Router
probe ipsweep, nmap, portsweep, satan, *mscan, *saint
dos neptune, pingofdeath, smurf, syslogd,

back, land, teardrop, *apache2,
*mailbomb, *processtable, *udpstorm

r2l #spy, guess_passwd, ftp_write, multihop, *snmpguess,
phf, *httptunnel, *xlock, *worm, *xsnoop *snmpgetattack

imap,
#warezclient
warezmaster
*named,
*sendmail

u2r *sqlattack
*ps

loadmodule, perl,
bu�er_over�ow *xterm rootkit

* = attack appears in test set only
= attack appears in training set only

The aim of `dos' attacks is to prevent users accessing a service. `TCP syn

�oods' are an example of this type of attack. `Probe' attacks, such as `port

scans' and `ip sweeps' are used to collect information about potential targets.

92 Chapter 4. Extracting Salient Features for IDS

Attackers on a remote machine using `r2l' attacks try to gain user access on

a machine they do not have access to. This can be achieved by, for example,

dictionary attacks based on password guessing. A `u2r' attack occurs when

an attacker who has already achieved user access on a system tries to gain

privileged access. Various bu�er over�ow attacks against network services fall

in this category.

Attackers often use combinations of the attack types classi�ed above. In

the majority of cases, attackers follow a `probe' → `r2l' → `u2r' pattern of

behaviour. The di�erent attack types and the di�erent phases of compromise

are described in more detail in Section 2.3 and Section 2.2.

The 1998 DARPA Intrusion Detection Evaluation training data contains

the following information for every day of the evaluation:

• tcpdump data collected by the tcpdump packet sni�er

• Sun Basic Security Modules (BSM) audit data from one UNIX Solaris

host in the inside network for some network sessions

• ps-monitor �le containing process status information of a machine

running BSM

• UNIX �lesystem snapshots of a machine running BSM

• list�les for tcpdump and BSM audit data with additional information

for selected network sessions

The tcpdump data contains information about every packet transmitted

between devices on the inside and the outside networks. BSM audit data

contains audit information describing system calls made to the Solaris kernel.

The ps-monitor �le contains the output of the UNIX command ps running

periodically. The additional information provided by the list�les basically

adds session start time, session duration, source and destination port, source

and destination IP, and attack name for the tcpdump �les and the BSM audit

data. The training set contains a total of 22 di�erent attacks types.

The test data used to evaluate a trained intrusion detection system

provides the same sensor data except the list�les with the labelled sessions

containing the attacks. The test set contains approximately 114 instances of

4.4. DARPA and KDD Cup '99 Datasets 93

37 di�erent attacks. Of the attacks, 17 are new and not part of the training

set. Two attacks appear only in the training data.

The tcpdump data provided by the 1998 DARPA Intrusion Detection

Evaluation network was further processed and used for the 1999 KDD Cup

contest at the �fth International Conference on Knowledge Discovery and

Data Mining1. The learning task of this competition was to classify the

preprocessed connection records into either normal tra�c or one out of the

four given attack categories (`dos', `probe', `r2l', `u2r').

The seven weeks of network tra�c collected from the DARPA training data

were preprocessed into �ve million labelled and categorised connection records

of approximately 100 bytes each; and the two weeks of training data were

processed into two million unlabelled connection records. Preprocessing of the

DARPA data for the 1999 KDD Cup contest was done with the MADAMID

framework described in [Lee 1999] and [Lee & Stolfo 2000]. The KDD Cup

'99 datasets are available from the UCI KDD Archive as the 1999 KDD Cup

Dataset [Hettich & Bay 1999].

A connection record summarises the packets of a communication session

between a connection initiator with a speci�ed source IP address and a

destination IP address over a pair of TCP/UDP ports. The labelled

connection records in the training set are either categorised as `normal' or

indicate one of 22 types of attack. As far as we know, the KDD Cup '99

dataset is, as of today, still the only publicly available dataset with fully

labelled connection records spanning several weeks of network tra�c and a

large number of di�erent attacks.

Each connection record contains 41 input features�34 continuous- and

7 discrete-valued�grouped into basic features and higher-level features. The

basic features are directly extracted or derived from the header information

of IP packets and TCP/UDP segments in the tcpdump �les of each session

(basic features 1�9 in Table A.1 on Page 182). This was done by using

a modi�ed version of the freely available Bro Intrusion Detection System2

presented in [Paxson 1999]. Each connection record was produced when either

1The KDD Cup is an annual Knowledge Discovery and Data Mining competition

organised by the ACM Special Interest Group on Knowledge Discovery and Data Mining.
2http://bro-ids.org/

94 Chapter 4. Extracting Salient Features for IDS

the connection was terminated or Bro was closed. The list�les for tcpdump

from the DARPA training data where used to label the connection records.

The so-called content-based higher-level features use domain knowledge to

look speci�cally for attacks in the actual data of the segments recorded in

the tcpdump �les. These address `r2l' and `u2r' attacks, which sometimes

either require only a single connection or are without any prominent sequential

patterns. Typical features include the number of failed login attempts and

whether or not root access was obtained during the session (features 10�22 in

Table A.1 on Page 182).

Furthermore, there are time-based and connection-based derived features to

address `dos' and `probe' attacks. Time-based features examine connections

within a time window of two seconds and provide statistics about these.

To provide statistical information about attacks exceeding a two-second

time-window, such as slow probing attacks, connection-based features use a

connection window of 100 connections. Both are further split into same-host

features, which provide statistics about connections with the same destination

host, and same-service features, which examine only connections with the

same service (features 23�41 in Table A.1 on Page 182).

The KDD Cup '99 competition provides the training and testing datasets

in a full set, and also a so-called `10%' subset version. The `10%' subset

was created due to the huge amount of connection records present in the

full set; some `dos' attacks have millions of records. For this reason, not

all of these connection records were selected. Furthermore, only connections

within a time-window of �ve minutes before and after the entire duration of an

attack were added into the `10%' datasets. To achieve approximately the same

distribution of intrusions and normal tra�c as the original DARPA dataset, a

selected set of sequences with `normal' connections were also left in the `10%'

dataset. Training and test sets have di�erent probability distributions.

The full training dataset contains nearly �ve million records. The full

training dataset and the corresponding `10%' both contain 22 di�erent attack

types in the order that they were used during the 1998 DARPA experiments.

The full test set, with nearly three million records, is only available

unlabelled; but a `10%' subset is provided both as unlabelled and labelled

test data. It is speci�ed as the `corrected' subset with a di�erent distribution

4.5. Extracting Salient Features 95

and additional attacks not part of the training set. For the KDD Cup '99

competition, the `10%' subset was intended for training. The `corrected'

subset can be used for performance testing; it has over 300,000 records

containing 37 di�erent attacks.

The distributions of the four di�erent attack classes in the full training

set, `10%' training set, and the `corrected' test set is shown in Table 4.4. It

is to be noticed that the sample distribution of `probe', `r2l' and `u2r' attacks

varies strongly between the training sets and the test set.

Table 4.4: The varying distributions of the �ve tra�c classes in the KDD Cup '99
datasets. The distributions of remote-to-local (`r2l') and user-to-root (`u2r') attacks
vary strongly between the training set and the test set.

tra�c class full train 10% train 10% test
normal 972781 19.8590% 97278 19.6911% 60593 19.4815%
dos 3883366 79.2778% 391458 79.2391% 229853 73.9008%
probe 41102 0.8391% 4107 0.8313% 4166 1.3394%
r2l 1126 0.0230% 1126 0.2279% 16347 5.2558%
u2r 52 0.0011% 52 0.0105% 70 0.0225%∑

attacks 3925646 80.1409% 396743 80.3089% 250436 80.5185%∑
records 4898427 100% 494021 100% 311029 100%

4.5 Extracting Salient Features

The majority of published results observing feature reduction on the KDD

Cup '99 datasets are trained and tested on the `10%' training set only (see

[Sung 2003], [Kayacik et al. 2005] and [Lee et al. 2006]). Some researchers

used custom-built datasets with over 10,000 random records extracted from

the `10%' KDD Cup '99 training set (see [Chavan et al. 2004], [Chebrolu

et al. 2005] and [Chen et al. 2005]). These sets were split into training and

test records. Due to the fact that `r2l' and `u2r' attacks very seldom occur

in the training data, and produce very few connection records per attack,

the results for these attacks cannot be very meaningful, even if corresponding

records are manually added to the training data. Furthermore, these results

using only the KDD Cup '99 training data cannot be directly compared to

96 Chapter 4. Extracting Salient Features for IDS

results using the original test set. One strong reason for this is the widely

di�ering tra�c types and distributions of these two sets.

[Sung 2003] applied single-feature deletion to the KDD Cup '99 datasets

using neural networks and support vector machines. Using the SVM classi�er,

they extracted a 30-feature set with improved training time and, in terms of

accuracy, comparable performance. With the neural network classi�er using

34 important features, they improved training time and false negative rate, but

with a signi�cant loss of accuracy. For the SVM classi�er, they also reduced

the number of features for the �ve individual tra�c classes to 25 (`normal'),

7 (`probe'), 19 (`dos'), 8 (`u2r') and 6 (`r2l').

Important input features with a focus on building computationally e�cient

intrusion detection systems were identi�ed by [Chebrolu et al. 2005]. They

investigated the performance of Bayesian networks, and classi�cation and

regression trees. Both classi�ers already provide methods for signi�cant

feature selection; Bayesian networks use the Markov blanket model, whereas

classi�cation and regression trees use the Gini impurity measure. The feature

reduction using the Markov blanket model found 17 important features. Using

classi�cation and regression trees, only primary splitters were considered,

resulting in a set of 12 important features. The authors conclude by suggesting

a hybrid model using both classi�ers.

[Chavan et al. 2004] use a decision tree approach for feature ranking per

class. For evaluation, they use arti�cial neural networks and fuzzy inference

systems. The authors reduce the number of features to 13 (`normal'), 16

(`probe'), 14 (`dos'), 15 (`u2r') and 17 (`r2l').

[Kayacik et al. 2005] investigated the relevance of each feature provided

in the KDD Cup '99 intrusion detection dataset in terms of information gain.

The paper presents the most relevant feature for each individual attack that

occurs in the training set. An important result is that 9 features make no

contribution whatsoever to intrusion detection.

[Chen et al. 2005] reduce the number of input features using the �exible

neural tree Model to 4 (`normal'), 12 (`probe'), 12 (`dos'), 8 (`u2r') and 10

(`r2l').

A genetic feature selection method, based on feature weighting, was

proposed by [Lee et al. 2006]. The proposed genetic algorithm wrapper

4.5. Extracting Salient Features 97

approach is compared to a non-linear �lter. Performance was measured

using a selective naïve Bayes classi�er. Both methods extracted a total of

21 important features, with 11 features in common. The overall performance

of the genetic feature selection method shows a slight improvement in terms

of accuracy. The proposed approach was especially e�ective in detecting

unknown attacks.

From these experiments, we conclude that the potential for feature

reduction is signi�cant. At least a quarter of the features provided by the

KDD Cup '99 datasets seem to be unimportant for classifying the observed

attacks.

4.5.1 Custom Data Preparation and Preprocessing

The initial preprocessing of the network data collected at the 1998 DARPA

Intrusion Detection Evaluation network for the 1999 KDD Cup contest was

done with the MADAMID framework described in [Lee 1999] and [Lee &

Stolfo 2000]. The connection records of the KDD Cup '99 dataset contains

continuous and nominal (discrete) features preprocessed in very di�erent ways.

The continuous features are in various ranges and some have very large

values (up-to 700M). The number of discrete values of the nominal features

range from three (`protocol_type') to 71 (`services').

We estimated MLP neural networks and SVMs as the strongest candidates

for classi�cation of the network datasets. Neural networks require �oating

point numbers for the input neurons, preferably in the range [−1, 1], and
�oating point numbers in the range [0, 1] for the target neurons. All features

were preprocessed to ful�l this requirement. Scaling the input values to [0, 1]

is possible as well, but [−1, 1] works better, since any scaling that sets the

mean closer to zero improves the value of the feature.

Preprocessing was done using our own customised network feature

preprocessing scripts. For nominal features with three distinct values, we

used e�ects coding mapping from one or two input features, such as protocol

type: UDP = [0, 1], protocol type: ICMP = [1, 0], and protocol type: TCP

= [−1,−1]. For nominal features with a large number of distinct values, we

�rst mapped to ordered numbers using a least-�rst ranking score. Then we

98 Chapter 4. Extracting Salient Features for IDS

scaled the numbers to the range [−1, 1], for example �ag: S3 (50 occurrences)
= −1 and �ag: SF (3744328 occurrences) = 1. We chose the ranking order

according to the number of occurrences in the test set.

The nominal target value `connection type', containing the speci�c tra�c

label, is �rst mapped to one of the �ve connection classes (`normal', `dos',

`probe', `r2l', `u2r'), according to the categorisation script by W.Lee used in

the KDD Cup '99 contest scoring.3 Then each class is represented by its own

output feature having a binary value, such as connection type: `normal' =

[1, 0, 0, 0, 0] and connection type: `r2l' = [0, 0, 0, 1, 0]. We removed features

with non-changing values from the training data, such as `num_outbound_-

cmds' and `is_host_login'.

For the numeric features `duration', `src_bytes', and `dst_bytes', we

started with the removal of outliers before scaling the values to the range

[−1, 1]. This was done by reducing the maximum value of each feature to a

manually de�ned threshold; for example, duration: Maximum 30,000 sec. We

estimated the threshold values using expert knowledge on expected maximum

values to be considered for `normal' connections. Before normalisation, we

�nally applied the natural logarithm to the continuous features with strongly

biased distributions having a lower bound but no upper bound. For all

operations, we used a precision of 10−6.

After preprocessing, our datasets consisted of 39 input features and one

output feature, where the input features were mapped to 40 inputs, and the

output feature was mapped to the 5 outputs.

4.5.2 Visualisation of Class Distributions

For feature reduction, we used a custom-built training set with 10,422

instances and the original `10%' KDD Cup '99 training set. For testing, we

applied 10-fold cross-validation or used the original KDD Cup '99 test set.

The custom training set was extracted from the full KDD Cup '99 dataset

to optimise training performance. One aim was to improve the attack

distribution in favour of rare attack tra�c patterns. The dataset contains

10,422 connection records, including all 41 features. It was sampled and

3http://www-cse.ucsd.edu/users/elkan/tabulate.html (2009-05-08)

4.5. Extracting Salient Features 99

randomised from up to 1,000 samples out of the 23 tra�c types contained

in the full dataset. We preprocessed all features as described in Section 4.5.1

using our custom preprocessing scripts.

The tra�c types and their occurrences in the three training sets used (full,

`10%' and the generated 10,422 connection set), as well as the `10% corrected'

test set, are shown in Table A.2 on Page 183.

The WEKA data mining suite was applied for data visualisation and

classi�cation. WEKA provides a large number of di�erent machine learning

algorithms4[Witten & Frank 2005]. For classi�cation, we applied the C4.5

decision tree algorithm (in WEKA speci�ed as J4.8), naïve Bayes, Bayesian

networks, standard backpropagation with a multilayer perceptron feed-

forward neural network (MLP) and support vector machines (SVM, in WEKA

speci�ed as SMO) to the DARPA/KDD Cup '99 training data. All classi�ers

were run with WEKA's default parameters, unless explicitly stated otherwise.

We visualised the distributions of the �ve di�erent tra�c classes in the

training data using distribution histograms and scatter plots.

4.5.2.1 Distribution Histograms

First and foremost, we investigated the distribution of features in the data

by visualisation using histograms. In a distribution histogram, the value of

the feature is plotted against how often the value exists in the data. In the

histograms, outliers and skewed distributions are easily detected. This gives

valuable advice on necessary preprocessing steps, such as data cleaning and

necessary data transformations. After preprocessing the data, the histograms

can reveal obvious correlations between features and target classes. The

distribution histograms have been proven very valuable for deciding on and

optimising the necessary preprocessing steps.

The investigation of the original training data using distribution

histograms, shown in Figure A.1 on Page 184, revealed that the features

`num_outbound_cmds' and `is_host_login' have no variance at all in the

training data. They always have a zero value, and so do not provide any

information. We removed them from all datasets. The features `duration',

4http://www.cs.waikato.ac.nz/ml/weka/ (2009-05-08)

100 Chapter 4. Extracting Salient Features for IDS

`src_bytes' and `dst_bytes' have strongly biased distributions. Furthermore,

these features contain, in comparison to their average values, some huge

outliers. We decided to threshold connections longer than 30,000 sec. (8

h 20 m) and larger than three megabytes to this maximum value. For these

three features, we also applied the natural logarithm to all values. Feature

preprocessing is described in more detail in Section 4.5.1.

Figure A.2 on Page 185 shows the distributions of the features

in the `10%' training set after preprocessing. Now, we note some

obvious correlations between individual features and the `dos' attack

target class. The features `protocol_type', `service', `�ag', `src_bytes',

`dst_bytes', `land', `wrong_fragment', `count', `srv_count', `serror_rate',

`srv_serror_rate', `same_srv_rate', `di�_srv_rate', `srv_di�_host_rate',

`dst_host_srv_count', `dst_host_same_srv_rate', `dst_host_serror_rate',

`dst_host_srv_serror_rate', `dst_host_rerror_rate', and `dst_host_srv_-

rerror_rate' strongly correlate with `dos' attacks.

Unfortunately, the occurrences of network probes, `r2l' and `u2r' attacks

are much too rare to be plotted in su�cient numbers in the histograms

shown in Figures A.1 on Page 184 and A.2 on Page 185 to visually attract

attention. We addressed this by using our custom-built dataset with

10,422 instances described in Section 4.5.2. This dataset holds a far more

favourable distribution for visually investigating these rare attack types. The

corresponding histogram is shown in Figure A.3 on Page 186. It reveals that:

`dos' attacks and network probes correlate with the features `protocol_-

type', `�ag', `count', `srv_count', `'serror_rate', `srv_serror_rate', `rerror_-

rate', `srv_rerror_rate ', `same_srv_rate', `dst_host_srv_count', `dst_-

host_di�_srv_rate', `dst_host_serror_rate', `dst_host_srv_serror_rate',

`dst_host_serror_rate' and `dst_host_srv_serror_rate';

network probes correlate with the features `service', `�ag', `src_-

bytes', `serror_rate', `rerror_rate', `same_srv_rate', `di�_srv_rate',

`srv_di�_host_rate', `dst_host_srv_count', `dst_host_same_srv_rate',

`dst_host_di�_srv_rate', `dst_host_same_src_port_rate', `dst_host_-

srv_di�_host_rate', `dst_host_serror_rate' and `dst_host_rerror_rate';

the features `duration', `service', `src_bytes', `urgent', `hot', `num_-

failed_logins', `su_attempted', `num_root', `num_�le_creations', `num_-

4.5. Extracting Salient Features 101

access_�les', `is_guest_logged_in', `dst_host_srv_di�_host_rate' corre-

late with `r2l' attacks;

and the features `root_shell', `urgent', `num_failed_logins', `root_shell',

`num_root', `num_�le_creations', `num_shells', `num_access_�les' corre-

late with `u2r' attacks.

4.5.2.2 Scatter Plots

Another applied data visualisation method that reveals relationships between

investigated features are scatter plots. A scatter plot is a plot of two variables

against each other. A scatter plot matrix shows all pairwise scatter plots

on a single page. Relationships between variables can be identi�ed by a non-

random distribution of the points in the plot. Furthermore, scatter plots show

the presence of outliers.

Each scatter plot provides information about the strength, shape and

direction of the relationship between two features. The more points are

clustered along a line, the stronger is the relationship between the observed

variables. The relationship is positive if the line goes from lower-left to upper-

right, and negative when contrariwise. The shape of the line can be linear or

curved, a curve usually being quadratic or exponential.

We build scatter plot matrices from the remaining features after removal of

features with low information gain and decision tree pruning. We considered

feature pairs showing strong correlations in the scatter plots as candidates for

further removal.

4.5.3 Feature Extraction using Decision Tree Pruning

Prior to applying feature selection using decision trees, we compared

information gain for the original `10%' KDD Cup '99 training data and the

training data after preprocessing. The results, shown in Figure 4.3, con�rm

that the majority of features actually bene�t from the preprocessing steps.

An overview of all features is presented in Table A.1 on Page 182. All applied

preprocessing steps are explained in detail in Section 4.5.1.

The �rst six basic features all improve as a result of feature preprocessing.

The strongest bene�ciaries are the features `src_bytes' and `dst_bytes', where

102 Chapter 4. Extracting Salient Features for IDS

we removed the outliers and improved the distribution by applying the natural

logarithm. Applying e�ects coding to the `protocol_type' feature also had

a strong positive impact. The other three basic features, `land', `wrong_-

fragment' and `urgent', and most of the following content features, are of low

signi�cance for the majority of the connection records. Exceptions are the

features `hot', `num_failed_logins', `logged_in', and `is_guest_login'.

The time-based and connection-based features all show information gain

signi�cance for the classi�cation of the data. The features `count', `srv_count',

`rerror_rate', `srv_rerror_rate', `same_srv_rate', `di�_srv_rate', `srv_-

di�_host_rate', `dst_host_count', `dst_host_same_srv_rate', `dst_host_-

di�_srv_rate', `dst_host_same_src_port_rate', `dst_host_rerror_rate',

and `dst_host_srv_rerror_rate' even show improved signi�cance after

normalisation.

In terms of information gain, the features `hot', `logged_in', `num_root',

`num_access_�les', `serror_rate' , `srv_serror_rate', `dst_host_count',

`dst_host_srv_di�_host_rate', `dst_host_serror_rate', and `dst_host_-

srv_serror_rate' su�ered slightly from normalisation. But since this

transformation was lossless, we do not expect any signi�cant negative impact

on classi�cation.

Feature selection was done by building and examining post-pruned decision

trees. The applied J4.8 decision tree algorithm implements subtree raising as

a pruning operation. In subtree raising, the decision tree algorithm moves

nodes up towards the root of the tree and discards other nodes on the way.

After the �rst build from the training set using all features, we removed

features from the dataset that were not part of the tree. Then we continued

with a leave-one-out reduction until the removal of any feature led to

signi�cant performance loss in any of the �ve applied classi�ers. We used true

positive rate, false positive rate, precision, accuracy and costs as performance

metrics in each tra�c class. We also frequently estimated the ROC curve

and calculated the area under curve (AUC) value using the Mann Whitney

statistic. All values, except costs, were provided by WEKA. Costs were

manually calculated using the suggested values provided by the KDD Cup

'99.

To limit the number of iterations, our leave-one-out approach was biased.

4.5. Extracting Salient Features 103

Figure 4.3: Comparison of information gain of all features in the original and the
preprocessed KDD Cup '99 `10%' training data. An overview of the features is shown
in Table A.1 on Page 182. The strongest bene�ciaries are the features `src_bytes'
and `dst_bytes'. Some features also su�ered slightly from normalisation.

By default, we kept features close to the root of the tree, and one-by-

one, removed features close to or at leaves. We preferred the removal of

features that require domain knowledge or detailed tra�c data analysis to

features easily extracted from network data. We also frequently observed the

classi�cation and run-time performance of the �ve applied classi�ers.

From the observed subsets, in every run with improved or comparable

performance, we picked the best-performing attribute set. We declared the

absent attribute of the best-performing subset as an unimportant attribute.

We tested the performance of the �nal minimal feature set against the KDD

Cup '99 test set.

The applied feature selection algorithm can be summarised as follows:

104 Chapter 4. Extracting Salient Features for IDS

1. Construct a decision tree from all given training data using the full m

attributes set.

2. If not all attributes are used to construct the tree,

(a) mark the unused attributes as irrelevant attributes ai, and

(b) construct a new set with m = m− ai attributes.

3. Build trees for all possible subsets with m− 1 attributes.

4. If at least one subset is found with improved or comparable performance,

(a) mark the removed attribute of the best-performing subset as

unimportant attribute au, and

(b) construct a new set with m = m− au attributes.

5. Until all subset trees withm−1 attributes have a signi�cant performance
loss,

continue with 3.

6. Test found minimal feature set against training set and test set.

4.6 Minimal Sets for All Attacks

We followed two di�erent approaches in order to �nd minimal sets for detecting

all attacks with one trained classi�er. The aim of the �rst approach was to

extract a reduced feature set with few, if any, content features. All tested

classi�ers should at least maintain their performance on the reduced dataset

in comparison to using all features.

In our second approach to feature reduction, we searched for essential

minimal features, which could still compete with the well-performing classi�ers

of the KDD Cup '99 challenge. This time, we considered only the results of

the best-performing classi�er.

4.6. Minimal Sets for All Attacks 105

4.6.1 The 11 Feature Minimal Set

The �rst approach resulted in a set of 11 selected features, which consisted of

7 basic features and 4 higher-level features [Staudemeyer & Omlin 2009]. The

selected minimal features were `duration', `protocol_type', `service', `source_-

bytes', `dst_bytes', and `wrong_fragment'. Chosen higher-level features were

`serror_rate', `dst_host_srv_count', `dst_host_di�_srv_rate', `dst_host_-

same_src_port_rate', and `dst_host_rerror_rate'.

Figure A.4 on Page 187 shows a scatter plot matrix of the 11 features

using the custom training set with 10,422 instances. The scatter plots show

that there are strong correlations between the 5 selected higher-level features.

This is due to the fact that not all of these 5 features are essential for all

�ve tra�c classes. The strong correlations relate to `dos' and `probe' attacks,

which both generate large numbers of connection records per attack.

The correlations are shown by the diagonal clustering of data points along

a line in the scatter plots between these features. At least for some attacks

within these two classes, not all selected higher-level features are essential.

For the remaining tra�c types, there are no strong relationships a�ecting a

noticeable number of connection records between the selected features.

4.6.2 The 8 and 4 Feature Minimal Sets

The exhaustive, feature-by-feature reduction of our second approach led to

8 important features, in which we identi�ed the 4 most important minimal

features. The 4 features are `service', `src_bytes', `dst_host_di�_srv_rate',

and `dst_host_rerror_rate'. Additional important features are `dst_bytes',

`hot', `num_failed_logins', and `dst_host_srv_count'.

The `4-1' histogram in Figure 4.4 shows that, in terms of misclassi�cations,

any further feature removal leads to a signi�cant degradation of performance

on the non-statistical classi�ers. For training, we used our custom training

set, and for testing, we applied 10-fold cross-validation.

106 Chapter 4. Extracting Salient Features for IDS

Figure 4.4: Performance degradation of the 4 minimal feature dataset, removing
any of the features. The minimal features are `service', `src_bytes', `dst_host_-
di�_srv_rate', and `dst_host_rerror_rate'.

4.7 Minimal Sets for Individual Attacks

We split the preprocessed `10%' training dataset and the testing dataset into

four sets, each containing all normal tra�c, but only one out of the four attack

tra�c types (`probe', `dos' , `r2l', `u2r'). For each attack, we built pruned

decision trees containing only the most relevant features.

Figures 4.5 and 4.6 show the information gain of the four di�erent attacks

types for all features in the preprocessed KDD Cup '99 `10%' training data.

This allows us a more detailed individual analysis of the preprocessed features

for each attack class.

In terms of information gain, the �gures show that many attributes are

4.7. Minimal Sets for Individual Attacks 107

Figure 4.5: Information gain of network probes and `dos' attacks, observing all
features in the preprocessed KDD Cup '99 `10%' training data.

not suitable for classifying all four di�erent attack types. We notice that,

for network probes and `dos' attacks, the �rst 6 basic features and most of

the time- and host-based features are relevant. With the exception of the

`logged_in' feature, content features for these attacks are of very low relevance.

For `r2l' and `u2r' attacks, it is noticeable that, due to the nature of

these attacks, some of the relevant features are content features. The �rst

6 basic features and all host-based features are signi�cant for `r2l' attacks.

Additionally, the 4 content features `hot', `num_failed_logins', `logged_in',

and `is_guest_logged_in'; and the 3 time-based features `count', `srv_count',

and `srv_di�_host_rate', are also signi�cant.

For `u2r' attacks all features are, if any, of very low relevance. The

108 Chapter 4. Extracting Salient Features for IDS

Figure 4.6: Information gain of `r2l' and `u2r' attacks observing all features in the
preprocessed KDD Cup '99 `10%' training data.

10 features with the highest information gain are `service', `root_shell',

`hot', `num_compromised', `duration', dst_host_srv_count', `num_�le_-

creations', `dst_host_count', `src_bytes', and `dst_host_same_src_port_-

rate'.

First, we removed all features with no or very little information gain.

Examples are the `land' and the `su_attempted' features, which are of very low

relevance for any attack. Then, we built pruned decision trees and discarded

all features that were not part of the pruned tree.

From this set of remaining features, we generated a scatter plot matrix to

visualise the remaining relationships between the features and continued with

our decision tree feature reduction algorithm as described in Section 4.5.3.

We applied this process to the datasets of each attack type, in order

4.7. Minimal Sets for Individual Attacks 109

to further reduce the redundancies, until we reached a minimal set with

approximately 4�6 features, where further feature removal leads to signi�cant

performance loss.

4.7.1 Detecting Network Probes

Observing information gain for features in the network `probe' dataset, we

removed the features `land', `wrong_fragment', `urgent', `num_failed_logins',

`num_compromised', `root_shell', `su_attempted', and `num_shells', be-

cause they do not contribute to the classi�cation of network probes.

After building the pruned decision tree, the remaining `14' features

are `protocol_type', `service', `�ag', `src_bytes, dst_bytes', `logged_in',

`same_srv_rate', `dst_host_count', `dst_host_srv_count', `dst_host_-

same_srv_rate', `dst_host_di�_srv_rate', `dst_host_same_src_port_-

rate', `dst_host_srv_di�_host_rate', and `dst_host_rerror_rate'.

These `14' features are visualised in the scatter plot matrix shown in

Figure A.5 on Page 188. We note that some of the higher-level features

still show strong correlations, which con�rms the potential for further feature

reduction.

After feature reduction, the remaining 6 minimal features are `protocol_-

type', `src_bytes', `same_srv_rate', `dst_host_srv_count', `dst_host_-

same_srv_rate', and `dst_host_di�_srv_rate'. Observing the scatter plots

between these minimal features, we note very few correlations a�ecting only

a small number of connection records.

Furthermore, the `6-1' histogram in Figure 4.7 shows that any further

removal of features leads to performance degradation. We also note that

the feature `src_bytes' is the most important for successful classi�cation

of this tra�c class, and its removal causes the most signi�cant increase of

misclassi�cation errors. For the histogram, we used the `10%' training set

with 10-fold cross-valuation.

Another well-performing set for probe attacks containing only 2 features

is that of `src_bytes' and `dst_host_same_srv_rate'.

110 Chapter 4. Extracting Salient Features for IDS

Figure 4.7: The `6-1' histogram of minimal features related to network probes.
The 6 tested minimal features are, from left to right: `protocol_type', `src_bytes',
`same_srv_rate', `dst_host_srv_count', `dst_host_same_srv_rate', and `dst_-
host_di�_srv_rate', where `src_bytes' is the most important.

4.7.2 Detecting `dos' Attacks

For `dos' attacks, we removed the features `land' and `urgent' due to their lack

of information gain. After tree pruning, the remaining 11 features are `service',

`�ag', `src_bytes', `dst_bytes', `wrong_fragment', `count', `same_srv_rate',

`dst_host_same_src_port_rate', `dst_host_serror_rate', `dst_host_srv_-

serror_rate', and `dst_host_rerror_rate'.

The scatter plot matrix of the important features is shown in Figure A.6 on

Page 189. We note that the scatter plots between some higher-level features

still show strong correlations.

We extracted a number of di�erent well-performing subsets. One outstand-

4.7. Minimal Sets for Individual Attacks 111

Figure 4.8: The `5-1' histogram of minimal features for `dos' attacks using the
`10%' training set with 10-fold cross-validation. The 5 tested minimal features are,
from left to right: `service', `�ag', `src_bytes', `same_srv_rate', and `dst_host_-
srv_serror_rate'. The feature `src_bytes' proves to be most important.

ing, well-performing minimal set we found has the 5 minimal features `service',

`�ag', `src_bytes', `same_srv_rate', and `dst_host_srv_serror_rate'. The

scatter plots between the minimal features do not show correlations.

The `5-1' histogram shown in Figure 4.8, using the `10%' training set

with 10-fold cross-validation, shows that the removal of any feature leads to

performance loss. The histogram also shows that, just as for network probes,

the feature `src_bytes' is the most important feature for the classi�cation of

`dos' attacks.

Another well-performing subset contains the features `service', `src_bytes',

`same_srv_rate', `dst_host_same_src_port_rate', `dst_host_serror_rate',

112 Chapter 4. Extracting Salient Features for IDS

and `dst_host_srv_serror_rate'. A 4 feature subset, with an only slightly

poorer performance, contains the features `service', `�ag', `src_bytes', and

`count'.

4.7.3 Detecting `r2l' Attacks

For `r2l' attacks, the features `land', `wrong_fragment', `su_attempted',

`num_access_�les', `rerror_rate', and `srv_rerror_rate' have no information

gain and can be discarded. The 18 features remaining after pruning

are: `duration', `protocol_type', `service', `src_bytes', `dst_bytes', `hot',

`logged_in', `root_shell', `num_root', `srv_count', `dst_host_count', `dst_-

host_srv_count', `dst_host_di�_srv_rate', `dst_host_same_src_port_-

rate', `dst_host_srv_di�_host_rate', `dst_host_serror_rate', `dst_host_-

srv_serror_rate', and `dst_host_srv_rerror_rate'.

We did not have enough computing resources for an exhaustive search of

this rather large set of 18 feature candidates. For this reason, we removed the

features `protocol_type', `logged_in', `root_shell', and `num_root', which

have very low information gain for `r2l' attacks, and which we, therefore,

considered as least relevant.

The scatter plot matrix of the remaining `14' features is shown in

Figure A.7 on Page 190. Again, some of the scatter plots between higher-

level features show strong correlations.

After feature reduction, the 6 remaining minimal features are: `duration',

`service', `src_bytes', `hot', `srv_count', and `dst_host_srv_count'. The

scatter plots between these 6 features do not show strong correlations.

The `6-1' histogram is shown in Figure 4.9. This shows once again that

`src_bytes' is the most important feature. Another well-performing minimal

set of 6 features is: `service', `src_bytes', `hot', `srv_count', `dst_host_srv_-

count', and `dst_host_serror_rate'.

4.7.4 Detecting `u2r' Attacks

In the remaining `u2r' attack class, the features with no information gain

are: `�ag', `land', `wrong_fragment', `su_attempted', `num_access_�les',

4.7. Minimal Sets for Individual Attacks 113

Figure 4.9: `6-1' histogram of the minimal features for `r2l' attacks using the `10%'
training set with 10-fold cross-validation. The 6 minimal features are: `duration',
`service', `src_bytes', `hot', `srv_count', and `dst_host_srv_count', with `src_-
bytes' being the most important feature.

`is_guest_login', `srv_serror_rate', `rerror_rate', `srv_rerror_rate', `di�_-

srv_rate', `dst_host_same_srv_rate', `dst_host_di�_srv_rate', `dst_-

host_serror_rate', `dst_host_srv_serror_rate', `dst_host_rerror_rate',

and `dst_host_srv_rerror_rate'.

Pruning reduces the features to 8, namely: `service', `srv_bytes',

`dst_bytes', `hot', `root_shell', `num_�le_creations', `dst_host_count', and

`dst_host_srv_count'. Figure A.8 on Page 191 shows the scatter plot matrix

of the important features. We note no salient correlations, which might be

related to the fact that few examples are available.

After feature reduction, the remaining minimal set containing the 5 min-

114 Chapter 4. Extracting Salient Features for IDS

Figure 4.10: `5-1' histogram of the minimal features for `u2r' attacks using the
`10%' training set with 10-fold cross-validation. The 5 minimal features are: `src_-
bytes', `dst_bytes', `hot', `num_�le_creations', and `dst_host_srv_count', where
the �rst 4 are the most important.

imal features for most detectable `u2r' attacks are: `src_bytes', `dst_bytes',

`hot', `num_�le_creations', and `dst_host_srv_count'. Figure 4.10 shows

the `5-1' histogram; it shows that the feature `num_�le_creations' is the

most important.

4.8 Conclusions

In this chapter, we investigated the potential to reduce the number of features

used for classifying the �ve tra�c classes `normal', `probe', `dos', `r2l', and

`u2r'. Our approach started with preprocessing all features using the custom

4.8. Conclusions 115

feature preprocessing framework presented.

We removed features with non-changing values in the training data from all

datasets. For continuous features, we removed outliers, applied normalisation,

and, if necessary, performed logarithmic scaling. For nominal features, we

applied least-�rst ranking and e�ects coding. We �nally mapped the target

features to one of the �ve tra�c classes, as suggested in the KDD Cup '99

challenge.

Then, we visualised the distributions of all features, with the calculation

of information gain for each feature. This has already given us a supportive

overview of important feature candidates. The distribution histograms and

information gain of most features showed signi�cant improvements after

preprocessing. Using our custom training set of 10,422 preprocessed instances

also helped to visualise the distributions for the three tra�c classes `probe',

`r2l', and `u2r', with only a few instances in the original data.

We successfully reduced the features for all �ve tra�c classes with a feature

selection approach based on decision tree pruning and domain knowledge. We

presented minimal sets for the multi-class categorisation of all �ve classes

with 11, 8 and 4 features. For the individual attack classes for extracted

minimal sets with 6, 5, 6 and 5 features for `probe', `dos', `r2l' and `u2r'

attacks respectively.

In the `X-1' histograms, we showed that any further feature removal leads

to signi�cant performance degradation of at least one classi�er. We visualised

the feature relationships of all selected features with scatter plot matrices,

using our custom 10,422 instances training set. The plots reveal that very few

correlations remain between the selected features.

Our results show that a large number of features are, in fact, redundant

or, at least, unimportant. We were able to drastically reduce the number of

features from the initial 41 down to 4�8 minimal features for each attack class.

An important side-e�ect is that this extensive feature reduction signi�cantly

decreases the computational resources required for training the classi�er.

In the next chapter, we dive further into the details of the KDD Cup

'99 dataset, summarise criticisms, and compare results previously published.

Then, we present our results applying the static classi�ers covered in Chapter 3

to the dataset using all features and our minimal feature sets.

Chapter 5

Evaluating Static Classifiers

for IDS

Contents

5.1 Introduction . 117

5.2 Criticism of the DARPA Datasets 118

5.3 Results of the KDD Cup '99 Competition 119

5.4 Other Results . 121

5.5 Classi�er Performance Metrics 125

5.6 Performance Analysis Using All Features 126

5.7 Comparison of Feature Sets 128

5.7.1 Two-Class Categorisation 128

5.7.2 Multi-Class Categorisation 129

5.8 Performance Analysis with Minimal Feature Sets . . 132

5.8.1 Multi-Class Categorisation 132

5.8.2 Individual Attack Classes 136

5.9 Discussion . 139

5.10 Conclusions . 144

5.1 Introduction

In previous chapters, we looked at di�erent machine learning methods, we

compared applicable performance metrics, and we analysed the only publicly

available and labelled intrusion detection dataset. Furthermore, we optimised

the KDD Cup '99 dataset by preprocessing and evaluated a number of well-

known feature reduction methods on the dataset. Then, we presented a

118 Chapter 5. Evaluating Static Classifiers for IDS

method for the extraction of salient features from the KDD Cup '99 data

and important features for all attack classes.

In this chapter, we model network tra�c using the static classi�ers

presented in Chapter 3. We start with a look into criticisms and at results

previously published on the KDD Cup '99 dataset. We then present our

various contributions and evaluate our experimental results with these �ve

classi�ers. We use the preprocessed KDD Cup '99 datasets and the reduced

feature sets presented in Chapter 4. In this process, we choose a number of

suitable performance metrics and we show how our preprocessing and feature

reduction of the datasets has a large positive impact on the performance of

the classi�ers.

We present two experiment series in this chapter. For the �rst series,

we present the results using our 11-feature set. The results of these early

experiments were used to optimise our series of operations for preprocessing

and feature selection. For the second series, we present a detailed performance

comparison of our �nal experimental results, using all the selected classi�ers.

For multi-class categorisation and for the detection of individual attack classes,

we investigate the performance of the corresponding minimal feature sets in

the target range of 4�8 features.

5.2 Criticism of the DARPA Datasets

A short time after the 1998 and 1999 DARPA intrusion detection system

evaluations, [McHugh 2000] wrote a detailed critique, identifying shortcomings

of the provided datasets. The primary criticism of the paper was that the

evaluation failed to verify that the network realistically simulated a real-world

network. [Mahoney & Chan 2003] looked more closely at the content of the

1999 DARPA evaluation tcpdump data and discovered that the simulated

tra�c contains problematic irregularities. The authors state that many of

the network attributes, which have a large range in real-world tra�c, have

a small and �xed range in the simulation. Since the 1998 evaluation data

was generated by the same framework, it can be assumed that it su�ers from

similar problems.

[Sabhnani & Serpen 2004] investigated the reasons why classi�ers fail to

5.3. Results of the KDD Cup '99 Competition 119

detect most of `r2l' and `u2r' attacks in the KDD Cup '99 datasets. They

conclude that it is not possible for any classi�er to accomplish an acceptable

detection rate for these two attack classes. The authors concede that this

might be not be the case when the KDD Cup '99 datasets are used in an

anomaly detection context.

[Brugger & Chow 2005] applied the tcpdump tra�c data �les provided with

DARPA datasets to the Snort intrusion detection system. The performance of

this mainly signature-based intrusion detection system was rather poor. The

authors reason that this is due to the fact that it is di�cult to detect `dos'

and `probe' attacks with a �xed signature. So, the detection of the `r2l' and

`u2r' attacks is, in contrast, much better. The paper emphasises the need to

build a more realistic intrusion detection dataset, with a focus on false positive

evaluation and more recent attacks. For a detailed description of the Snort

IDS, see [Roesch 1999].

5.3 Results of the KDD Cup '99 Competition

During the KDD Cup '99 competition, 24 entries were submitted. The

�rst three places used variants of decision trees and showed only marginal

di�erences in performance. The �rst 17 submissions of the competition were

all considered to perform well. A summary of all results is provided by

[Elkan 2000].

The winning entry, presented by [Pfahringer 2000], used a variant of

the C5 decision tree algorithm, with cost-sensitive bagged boosting. For

training, 50 samples were drawn from the full training data, enforcing a custom

distribution and removing duplicates. Then an ensemble of 10 C5 decision

trees were generated from each sample, both C5's error-cost and boosting

options. The authors calculate the �nal predictions, on top of the 50 single

predictions of the sub-ensembles, by minimising the conditional risk.

The second-placed decision tree solution, by [Levin 2000], used the data-

mining tools `Kernel-Miner' to build an optimal decision forest. Therefore, the

provided `10%' training data was divided into a set of partitions. A dedicated

decision tree was constructed for each partition.

Third place was awarded to a solution labelled as MP13, by

120 Chapter 5. Evaluating Static Classifiers for IDS

Table 5.1: Results of applying a variant of the C5 decision tree classi�er to the
KDD Cup '99 datasets. This winning entry of the challenge was presented by
[Pfahringer 2000].

ac
tu
al

prediction
normal probe dos u2r r2l TPR (DR)

normal 60262 243 78 4 6 0.995
probe 511 3471 184 0 0 0.833
dos 5299 1328 223226 0 0 0.971
u2r 168 20 0 30 10 0.132
r2l 14527 294 0 8 1360 0.084

PRECISION: 0.746 0.648 0.999 0.714 0.988 COST: 0.2331
FPR (FAR): 0.082 0.006 0.003 0.000 0.000 ACC: 92.71%

Table 5.2: Classi�er results after building an optimal decision forest using the
KDD Cup '99 datasets. This solution was presented by [Levin 2000] and ranked in
second place at the challenge.

ac
tu
al

prediction
normal probe dos u2r r2l TPR (DR)

normal 60244 239 85 9 16 0.994
probe 458 3521 187 0 0 0.845
dos 5595 227 224029 2 0 0.975
u2r 177 18 4 27 2 0.118
r2l 14994 4 0 6 1185 0.073

PRECISION: 0.739 0.878 0.999 0.614 0.985 COST: 0.2356
FPR (FAR): 0.085 0.002 0.003 0.000 0.000 ACC: 92.92%

[Vladimir et al. 2000]. The authors summarised the method as `recognition

based on voting decision trees using pipes in potential space'. For training

data, a custom `10%' training data subset was built, involving some data

reduction.

[Agarwal & Joshi 2000] proposed a rule-based classi�er model for multi-

class classi�cation called PNrule. The model consists of positive and negative

rules that predict the presence or absence of a class respectively. Classes could

be individual attacks or whole categories, such as `r2l' and `u2r'.

In ninth place in the challenge was the 1-nearest neighbour classi�er, which

showed that simple methods also achieved good results.

The results of the classi�ers ranked in �rst, second and ninth places in the

KDD Cup '99 challenge, and the results of the PNrule-classi�er are shown in

Tables 5.1, 5.2, 5.3 and 5.4.

5.4. Other Results 121

Table 5.3: Results of applying a rule-based classi�er model for multiclass
classi�cation called PNrule to the KDD Cup '99 dataset as suggested by [Agarwal
& Joshi 2000].

ac
tu
al

prediction
normal probe dos u2r r2l TPR (DR)

normal 60316 175 75 13 14 0.995
probe 889 3042 26 3 206 0.730
dos 6815 57 222874 106 1 0.970
u2r 195 3 0 15 15 0.066
r2l 14440 12 1 6 1730 0.107

PRECISION: 0.730 0.925 1.000 0.105 0.880 COST: 0.2381
FPR (FAR): 0.089 0.001 0.001 0.000 0.001 ACC: 92.59%

Table 5.4: The 1-nearest neighbour classi�er ranked in ninth place at the KDD
Cup '99 challenge. This shows that a simple classi�er is as well able to achieve good
results on the data.

ac
tu
al

prediction
normal probe dos u2r r2l TPR (DR)

normal 60322 212 57 1 1 0.996
probe 697 3125 342 0 2 0.750
dos 6144 76 223633 0 0 0.973
u2r 209 5 1 8 5 0.035
r2l 15785 308 1 0 95 0.006

PRECISION: 0.725 0.839 0.998 0.889 0.922 COST: 0.2523
FPR (far): 0.091 0.002 0.005 0.000 0.000 ACC: 92.33%

5.4 Other Results

After the challenge, a number of other results of learning algorithms

successfully applied to the KDD Cup '99 data were published. In the following

papers, the authors used the same training and testing data as requested in

the challenge, and provided comparable results.

[Sabhnani & Serpen 2003] evaluate a comprehensive set of machine learning

algorithms and suggest a multi-classi�er model. The di�erent algorithms

applied were a multilayer perceptron neural network, incremental radial basis

function neural network, maximum likelihood Gaussian classi�er, k-means

clustering, a nearest cluster algorithm, a leader algorithm, a hypersphere

algorithm, a fuzzy adaptive resonance theory mapping algorithm, and the

C4.5 decision tree. The results showed that certain algorithms gave a higher

probability of detection in speci�c attack categories than others, but that no

122 Chapter 5. Evaluating Static Classifiers for IDS

single algorithm showed superior results in all �ve attack categories. The

authors suggest a multi-class classi�er with a multi-class topology, as shown

in Figure 5.1.

gaussian

 classifier

 classifier

k−means

 classifier

neural network

connection records

’r2l’ attacks

’u2r’ attacks

’dos’ attacks

network probe

KDD Cup ’99

Figure 5.1: The multi-classi�er model suggested by [Sabhnani & Serpen 2003].
Certain algorithms show a higher probability of detection in speci�c attack categories
than others.

[Hu & Hu 2005] applied the classical Adaboost algorithm and a modi�ed

version of the same to the KDD Cup '99 datasets. The training data was

preprocessed within a constructed intrusion detection framework. Decision

stumps were chosen as a weak classi�er and given as input to Adaboost.

The results are comparable to the well-performing KDD Cup '99 submissions.

They show a fair detection rate, with a low false positive rate. This approach

o�ers a noticeable advantage in computational complexity compared to other

successful approaches.

[Song et al. 2005] demonstrate RSS�DSS, a genetic programming approach

for large datasets. The proposed framework divides the data into partitions

of 50 patterns, using random subset selection (RSS). In a second processing

layer, hierarchical dynamic subset selection (DSS) is applied so that evolution

may take place. The authors compared the results of using the �rst 8 basic

features of the dataset to the results using all features. The detection rates of

5.4. Other Results 123

the three larger categories are similar to the better KDD Cup '99 submissions,

but with a much higher false positive rate. The two rare `u2r' and `r2l' attacks

su�er from the feature reduction carried out. They are the worst performing

categories in terms of large error rates in comparison to the KDD Cup '99

submissions.

A machine learning approach, based on unsupervised presentation of data,

is taken by [Kayacik et al. 2007]. They use a multi-layer, self-organising

feature-map hierarchy. The datasets were preprocessed and customised for the

suggested architecture. Experiments were conducted with the �rst 6 features

using a three-layer hierarchy, and all features using a two-layer hierarchy.

Detection rates on the KDD Cup '99 `corrected' test set are similar to the

winning entry of the competition but, not unexpectedly for an unsupervised

approach, the false positive rates are three times higher. The authors conclude

that the principle reason for this is the lack of suitable boosting algorithms in

the �eld of unsupervised learning.

Machine learning techniques have been applied to network intrusion

detection for some time. There are a number of papers with partially

comparable results, where the authors used the DARPA or KDD Cup '99

training data but applied di�erent test sets to their learned classi�er.

In an early paper, [Sinclair et al. 1999] suggest genetic algorithms and

decision trees for automatic rule generation for an expert system that

enhances the capability of an existing IDS. [Yeung & Chow 2002] observed

a nonparametric density estimation approach, based on Parzen-window

estimators with Gaussian kernels.

[Mukkamala et al. 2004] compared the performance of a linear genetic

programming approach to arti�cial neural networks and support vector

machines. [Abraham & Grosan 2006] investigate the results of linear genetic

programming and multi-expression programming, which both outperformed

support vector machines and decision trees.

Other hybrid approaches combine neural networks and support vector

machines, published by [Mukkamala et al. 2003], arti�cial neural networks

and a fuzzy inference system, by [Chavan et al. 2004], and decision trees and

support vector machines, by [Peddabachigari et al. 2007]. The results show

that the suggested hybrid approaches provide superior detection. It is also

124 Chapter 5. Evaluating Static Classifiers for IDS

noted that support vector machines outperform neural networks, and that

decision trees perform slightly better than support vector machines if the

dataset is small.

There are also a number of interesting publications where the results are

not comparable due to the use of di�erent training and test datasets. [Debar

et al. 1992] and [Cannady 1998] suggested the use of neural networks as

components of intrusion detection systems.

[Zhang et al. 2001] compared the performance of a selection of neural

network architectures for statistical anomaly detection to datasets from four

di�erent scenarios. In their experiments, backpropagation and perceptron-

backpropagation-hybrid neural networks outperformed the other methods.

The use of hidden Markov models to detect complex multi-stage Internet

attacks that occur over extended periods of time is described by [Ourston

et al. 2003]. They determined that hidden Markov models performed slightly

better than decision trees and neural networks. An event classi�cation scheme

based on Bayesian networks is proposed by [Kruegel et al. 2003]. The scheme

signi�cantly reduces the number of false alarms in comparison to threshold-

based systems like naïve Bayes.

A framework for unsupervised learning, with two feature maps mapping

unlabelled data elements to a feature space, is suggested by [Eskin et al. 2002].

[Bivens et al. 2002] further illustrated that neural networks can be e�ciently

applied to network data in both a supervised and an unsupervised learning

approach. The authors used classifying, self-organising maps for data

clustering, and multilayer perceptron neural networks for classi�cation. They

trained their system to detect denial-of-service attacks, distributed denial-of-

service attacks, and port scans out of packet captures.

[Laskov et al. 2005] demonstrate that supervised learning techniques

applied to the KDD Cup '99 training data signi�cantly outperform

unsupervised methods. The best performance is achieved by non-linear

methods, such as support vector machines, multilayer perceptron neural

networks, and rule-based methods. Support vector machines proved to be

most robust in the presence of unknown attacks.

5.5. Classi�er Performance Metrics 125

5.5 Classi�er Performance Metrics

To get a baseline, we trained �ve di�erent classi�ers with the KDD Cup '99

training set, using all data features, and tested them against the provided

`corrected' test set. The classi�ers are J4.8 decision trees, naïve Bayes,

Bayesian networks, multilayer perception neural network (MLP), and support

vector machines (SVM). The J4.8 decision tree is an implementation of the

C4.5 algorithm introduced by [Quinlan 1993]. All classi�ers are part of the

WEKA data mining suite. We used the default settings described in the

publications underlying the particular classi�er.

The performance of the classi�ers on the KDD Cup '99 test set were

evaluated in terms of true positive rate, false positive rate, precision and

accuracy. We estimated these measures as follows:

• true positive rate (TPR) = true positive classi�cations
total number of positives

• false positive rate (FPR) = false positive classi�cations
total number of negatives

• precision = true positive classi�cations
total number of positive classi�cations

• accuracy (ACC) = correct classi�cations
total number of classi�cations

Additionally, we estimated the costs. To calculate the costs, we used the

cost matrix provided by the KDD Cup '99 challenge as presented in Table 5.5.

To ensure comparability, we increased the cost of misclassi�ed connection

records of the class `u2r' from 3 to 4. This was necessary, since the original

classi�cation script from the KDD Cup '99 challenge allowed some attacks to

be classi�ed as either `u2r' or `r2l' class. We did not allow dual-classi�cations,

but decided to adjust the costs to minimise the error. Due to the small

number of `u2r' attacks, only a few records are a�ected by this modi�cation.

The average cost of the �rst 17 entries of the KDD Cup '99 challenge had a

range of [0.2331�0.2684]. According to [Elkan 2000], results with cost values

within this range are considered to perform well.

126 Chapter 5. Evaluating Static Classifiers for IDS

Table 5.5: The cost matrix provided by the KDD Cup '99 challenge with a minor
modi�cation. We increased the cost for classifying `u2r' attacks as `normal' tra�c
from 3 to 4.

ac
tu
al

prediction
normal probe dos u2r r2l

normal 0 1 2 2 2
probe 1 0 2 2 2
dos 2 1 0 2 2
u2r 4∗ 2 2 0 2
r2l 4 2 2 2 0

∗was 3 in original KDD Cup '99 matrix

5.6 Performance Analysis Using All Features

Observing the performance of the investigated classi�ers on the original KDD

Cup '99 test set in terms of cost and accuracy, we note a few facts: The

naïve Bayes classi�er shows a poor performance; not being a very strong

candidate in comparison to the other classi�ers, which is not unexpected. The

poor performance of the SVM is simply as a result of its not being directly

applicable to multi-class problems. Here, we expect strengths for the detection

of individual attacks. The decision tree, the Bayesian network, and the MLP

neural network classi�er all show acceptable performance.

We note that after preprocessing, the poor performing naïve Bayes

classi�er improves slightly in performance, while the Bayesian network and

the MLP neural network classi�ers maintain their performance. The SVM

classi�er bene�ts strongly from preprocessing and achieves very good results;

close to the best-performing entries of the competition. And we �nally note

that the decision tree classi�er now shows a better performance than the KDD

Cup '99 winning entry. This is particularly interesting, since the applied cost-

sensitive bagged boosting C5 decision tree algorithm is a further development

of the C4.5-based decision tree algorithm and is expected to perform better.

This indicates that we signi�cantly improved the quality of the KDD Cup '99

data by conducting data preparation.

Table 5.6 summarises the KDD Cup '99 test dataset performance of the

three available results from the challenge, and our results using the �ve

classi�ers tested by us. In the table, the original 41 feature dataset is labelled

as `41', and our preprocessed feature dataset is labelled as `39p'.

5.6. Performance Analysis Using All Features 127

T
a
b
le
5
.6
:
P
er
fo
rm

an
ce

co
m
p
ar
is
on

of
th
e
w
in
n
in
g
re
su
lt
s
of
th
e
K
D
D
C
u
p
`9
9
ch
al
le
n
ge

to
ou
r
ev
al
u
at
ed

cl
as
si
�
er
s
tr
ai
n
ed

w
it
h

th
e
or
ig
in
al

41
-f
ea
tu
re

se
t
an
d
th
e
p
re
p
ro
ce
ss
ed

39
-f
ea
tu
re

se
t
(3
9p
).

T
h
e
S
V
M

cl
as
si
�
er

st
ro
n
gl
y
b
en
e�
ts

fr
om

p
re
p
ro
ce
ss
in
g

an
d
ac
h
ie
ve
s
ve
ry

go
o
d
re
su
lt
s.
T
h
e
J
4.
8
cl
as
si
�
er

ev
en

b
ea
ts
th
e
K
D
D
C
u
p
`9
9
w
in
n
in
g
en
tr
y.

10
%

cl
as
si
�
er

n
or
m
al

p
ro
b
e

d
os

u
2r

r2
l

se
t

T
P
R

F
P
R

T
P
R

F
P
R

T
P
R

F
P
R

T
P
R

F
P
R

T
P
R

F
P
R

A
C
C

C
O
S
T

1s
t

c5
.9
95

.0
82

.8
33

.0
06

.9
71

.0
03

.1
32

.0
00

.0
84

.0
00

92
.7
1%

.2
33
6

2n
d

d
fo
re
st

.9
94

.0
85

.8
45

.0
02

.9
75

.0
03

.1
18

.0
00

.0
73

.0
00

92
.9
2%

.2
36
2

9t
h

1-
n
n

.9
96

.0
91

.7
50

.0
02

.9
73

.0
05

.0
35

.0
00

.0
06

.0
00

92
.3
3%

.2
53
0

41
J
4.
8

.9
95

.0
89

.7
47

.0
02

.9
73

.0
03

.0
86

.0
00

.0
58

.0
00

92
.5
8%

.2
42
1

B
ay
es
N
et

.9
90

.0
84

.8
36

.0
14

.9
50

.0
02

.6
29

.0
05

.1
01

.0
01

91
.1
9%

.2
53
9

n
B
ay
es

.9
44

.0
85

.8
95

.1
36

.7
92

.0
18

.7
00

.0
11

.0
06

.0
01

78
.1
8%

.3
95
8

M
L
P

.9
84

.0
90

.7
25

.0
01

.9
73

.0
11

.0
86

.0
00

.0
56

.0
00

92
.3
7%

.2
48
4

S
V
M

.9
83

.1
10

.7
48

.0
03

.9
51

.0
04

.3
71

.0
00

.0
56

.0
00

90
.7
1%

.2
79
5

39
p

J
4.
8

.9
94

.0
77

.7
78

.0
08

.9
74

.0
04

.0
71

.0
00

.0
91

.0
00

92
.8
9%

.2
21
3

B
ay
es
N
et

.9
91

.0
84

.8
32

.0
15

.9
50

.0
00

.6
29

.0
05

.1
02

.0
01

91
.1
6%

.2
53
9

n
B
ay
es

.9
59

.0
79

.8
81

.1
35

.7
92

.0
17

.8
14

.0
03

.1
15

.0
06

79
.0
0%

.3
76
8

M
L
P

.9
95

.0
91

.7
91

.0
02

.9
72

.0
04

.3
43

.0
00

.0
12

.0
00

92
.3
4%

.2
52
9

S
V
M

.9
90

.0
87

.7
64

.0
02

.9
73

.0
03

.3
14

.0
00

.0
92

.0
00

92
.7
2%

.2
36
4

128 Chapter 5. Evaluating Static Classifiers for IDS

5.7 Comparison of Feature Sets

Classi�ers initially investigated were decision trees (C4.5, in WEKA speci�ed

as J4.8), naïve Bayes, Bayesian networks, and multilayer perceptron feed-

forward neural networks (MLP). We ran experiments using all 41 features,

using only the basic features, a combination of basic and tra�c features, and

the 17 and 12-feature sets. After feature reduction, we added experiments

with our own minimal feature set using 11 features. For training, we used our

custom-built 10,422-instance training set outlined in Section 4.5.2. For testing,

we used the `corrected' test set supplied by the KDD Cup '99 challenge.

The feature sets with 12 and 17 important features are suggested in

[Chebrolu et al. 2005]. Prior to running experiments with our custom dataset,

we con�rmed the published results using the `10%' training dataset and the

original test set.

5.7.1 Two-Class Categorisation

We started with experiments using feature sets with all, 17 and 12 features.

The results of these experiments with the custom-built training set lead

us to the assumption that the basic features already contain most of the

information required for successful classi�cation for the majority of the

connection records. To con�rm this, we added experiments with the basic

features and a combination of basic and tra�c features. With the aim of

extracting a reduced feature set, with only a few, if any, content features

and taking previous results into account, we built a feature set with only 11

features. This new minimal set is described in detail in Section 4.6.1.

We investigated the classi�er performance on the test set in terms of

accuracy. The best-performing classi�er is the Bayesian network, which shows

good performance on all tested feature sets. Using only the basic features, we

note that this classi�er already performs very well, with 91.21% accuracy. It

shows almost no performance loss in comparison to using the full feature set.

This classi�er also provides the best result, with 91.82% accuracy on the test

set, using the 17-feature set.

The neural network shows similar performance to the Bayesian network

5.7. Comparison of Feature Sets 129

classi�er but fails when using only the basic features. The decision tree and

the naïve Bayes classi�er both show a rather poor performance on all feature

sets. We note that the feature sets with 17 and 12 selected features show a

comparable test set performance for all classi�ers.

Using our 11 features minimal set, all strong classi�ers perform very well.

Even the simple naïve Bayes classi�er improves signi�cantly in performance

in comparison to previous results.

In comparison to the full feature set, the results show that our 11-feature

set trained with the customised training set boosts accuracy on the test set.

The performance increase is 9.5% for the decision tree algorithm and 7.5% for

the naïve Bayes. The Bayesian network and the MLP neural network were

nearly able to hold their performance.

The performance results of applying the four selected classi�ers on the

10,422 datasets with 41, basic only, basic and tra�c, 17, 12 and 11 selected

features, using tra�c label classi�cation, are presented in Table 5.7.

Table 5.7: Performance comparison using the 10,422 records training set with
tra�c label classi�cation. The results show that our 11-feature set trained on the
customised training set shows a good performance for all classi�ers on the test set
in terms of accuracy.

accuracy
classi�er → J4.8 nBayes bayesNet MLP
feature set ↓ test set test set test set test set

41 81.88% 70.83% 91.21% 91.71%
basic only 79.09% 75.62% 91.20% 61.98%
basic & tra�c 81.81% 67.73% 90.90% 91.12%
17 82.07% 71.56% 91.82% 88.77%
12 80.59% 72.76% 90.81% 90.37%
11 91.23% 78.16% 91.19% 90.98%

5.7.2 Multi-Class Categorisation

We proceeded with further investigation of the performance of our 11-feature

minimal set in comparison to the full feature set. We modi�ed the datasets

by mapping the 40 di�erent tra�c types to �ve tra�c classes as shown in

Table 4.3. We used the custom 10,422 training set and the test set provided

130 Chapter 5. Evaluating Static Classifiers for IDS

by the KDD Cup '99 competition with tra�c type classi�cation into the �ve

classes `normal', `dos', `probe', `r2l' and `u2r'. From now onwards, we always

trained the classi�ers on tra�c classes.

Next, we investigated the possibility of optimising the preprocessing

process for the selected features to increase performance further. This lead

us to the preprocessing steps described in Section 4.5.1. We marked the

experiment where we used the preprocessed datasets with a following `p'

(`11p').

After feature reduction, the results show a performance increase of 0.6%

in accuracy for the decision tree. The three other classi�ers lose performance.

The Bayesian network, the neural network, and the naïve Bayes classi�er all

lose accuracies 1%, 0.5% and 10% respectively.

For the 11-feature minimal set using the preprocessed datasets, we �nd

that in terms of accuracy of decision trees, Bayesian networks and neural

networks are able to hold their performance after preprocessing and feature

reduction. The decision tree classi�er improves even further in performance

after preprocessing. Naïve Bayes is the only classi�er that loses performance

noticeably.

Observing the classi�er performance on the test set using the preprocessed

11 features, the results show an impressive 93.20% accuracy for decision

trees. In comparison to the 11-feature set prior to preprocessing, the Bayesian

network and the neural network hold their performance, and the naïve Bayes

classi�er improves by 5% in accuracy.

An investigation into the true positive rate and the false positive rate per

attack tra�c class reveals more interesting details: For the decision tree, the

detection of network probes decreases, but the false alarm rate remains stable.

The detection of `u2r' attacks increases. Bayesian networks slightly decrease

on the detection of `probe' attacks, but this comes with an improved false

alarm rate. Here, the detection of network probes, `r2l' and `u2r' attacks

all decrease. The false alarm rate for `u2r' attacks is reduced. The MLP

neural network improves the false alarm rate on the detection of `dos' attacks.

The detection of `probe' attacks improves with a decrease of the false alarm

rate. Detection of `r2l' attacks is decreased, but detection of `u2r' attacks is

increased. We note that due to the few examples of `u2r' attacks, the very

5.7. Comparison of Feature Sets 131

T
a
b
le

5
.8
:

T
h
e
re
su
lt
s
of

ex
p
er
im
en
ts

u
si
n
g
th
e
41
,
11

an
d
11
p
-f
ea
tu
re

se
ts

w
it
h
th
e
10
,4
22

re
co
rd
s
tr
ai
n
in
g
se
t
an
d
th
e

`c
or
re
ct
ed
'
K
D
D
C
u
p
'9
9
te
st
se
t.
T
h
e
re
su
lt
s
sh
ow

th
at

in
te
rm

s
of

ac
cu
ra
cy

th
e
J
4.
8
d
ec
is
io
n
tr
ee

cl
as
si
�
er

p
er
fo
rm

s
ve
ry

w
el
l

u
si
n
g
th
e
p
re
p
ro
ce
ss
ed

11
-f
ea
tu
re

se
t
(1
1p
).

10
%

cl
as
si
�
er

n
or
m
al

d
os

p
ro
b
e

r2
l

u
2r

se
t

T
P
R

F
P
R

T
P
R

F
P
R

T
P
R

F
P
R

T
P
R

F
P
R

T
P
R

F
P
R

A
C
C

41
J
4.
8

.9
64

.0
79

.9
34

.0
17

.9
07

.0
14

.1
06

.0
02

.2
57

.0
00

91
.6
2%

11
J
4.
8

.9
74

.0
77

.9
36

.0
06

.8
98

.0
12

.1
99

.0
01

.5
43

.0
01

92
.2
6%

11
p

J
4.
8

.9
68

.0
61

.9
37

.0
16

.7
93

.0
11

.6
17

.0
04

.4
14

.0
01

93
.2
0%

41
n
B
ay
es

.9
30

.7
60

.7
66

.0
24

.9
13

.1
36

.0
83

.0
01

.6
86

.0
11

78
.0
9%

11
n
B
ay
es

.2
73

.0
28

.8
00

.6
59

.8
46

.1
36

.0
60

.0
00

.6
86

.0
10

67
.7
5%

11
p

n
B
ay
es

.9
19

.0
62

.6
97

.0
72

.9
69

.1
98

.1
59

.0
07

.5
71

.0
02

72
.9
0%

41
B
ay
es
N
et

.9
80

.0
81

.9
24

.0
07

.8
25

.0
16

.2
01

.0
02

.7
43

.0
02

91
.3
3%

11
B
ay
es
N
et

.9
73

.0
82

.9
12

.0
10

.7
92

.0
25

.0
94

.0
04

.6
29

.0
03

89
.9
7%

11
p

B
ay
es
N
et

.9
71

.0
81

.9
12

.0
07

.8
50

.0
25

.1
39

.0
04

.6
57

.0
02

90
.1
2%

41
M
L
P

.9
77

.0
83

.9
42

.0
04

.8
15

.0
03

.1
69

.0
02

.6
00

.0
02

92
.5
5%

11
M
L
P

.9
44

.0
79

.9
41

.0
23

.7
01

.0
06

.2
17

.0
06

.4
14

.0
01

91
.7
9%

11
p

M
L
P

.9
57

.0
77

.9
32

.0
04

.7
51

.0
15

.2
42

.0
06

.1
14

.0
01

91
.5
2%

132 Chapter 5. Evaluating Static Classifiers for IDS

low false alarm rates are not very meaningful and di�cult to compare.

The results of the experiments with the 41, 11 and 11p features using the

KDD Cup '99 test set are summarised in Table 5.8.

5.8 Performance Analysis with Minimal

Feature Sets

In following experiments, we additionally investigated the J4.8 decision trees,

naïve Bayes, Bayesian networks, and MLP feed-forward neural networks,

and also the support vector machines (SVM, in WEKA speci�ed as SMO)

classi�er. We used the reduced feature sets as described in Sections 4.6.1

and 4.6.2. For these and for all following experiments, we trained using the

preprocessed `10%' training set and tested on the KDD Cup '99 test set.

5.8.1 Multi-Class Categorisation

For the preprocessed 11 feature dataset, the best-performing classi�er was the

SVM. Table 5.9 shows the resulting confusion matrix. In terms of costs, all

classi�ers except naïve Bayes showed performance comparable to the winning

entries of the KDD Cup '99 competition.

Table 5.9: The resulting confusion matrix of the SVM classi�er trained with 11
features on the preprocessed `10%' dataset and tested on the KDD Cup '99 test set.
The performance is in terms of cost comparable to the winning entries of the KDD
Cup '99 challenge.

ac
tu
al

prediction
normal probe dos u2r r2l TPR (DR)

normal 60017 235 78 6 6 0.990
probe 1143 2761 262 0 0 0.663
dos 6020 137 223696 0 0 0.973
u2r 57 0 3 0 10 0.000
r2l 15407 3 17 0 920 0.056

PRECISION: 0.726 0.878 0.998 - 0.930 COST: 0.2463
FPR (FAR): 0.090 0.001 0.007 0.000 0.000 ACC: 92.40%

Using the 8-feature set, the decision tree and the MLP neural network

classi�er maintain their performance. Bayesian networks and the SVM

5.8. Performance Analysis with Minimal Feature Sets 133

Figure 5.2: Classi�er performance comparison in terms of costs, using the cost
matrix provided by the KDD Cup '99, using the four dataset variants with 41, 41p,
11, 8 and 4 features. Only the decision tree classi�er can still keep up its performance
after feature reduction to 4 minimal features. The MLP neural network classi�er
shows only a minimal decrease in performance. Analysing the results, we note that
the trade-o� is a noticeable decrease in performance for the detection of rare `r2l'
and `u2r' attacks.

classi�er show a decrease in performance. After reducing the feature set

to the 4 minimal features only, the decision tree classi�er can still keep up

its performance, although there is a noticeable decrease in performance for

the detection of rare `r2l' and `u2r' attacks. In terms of accuracy and costs,

however, the results are still on the same level as the KDD Cup '99 winning

entry. Figure 5.2 shows a classi�er performance comparison in terms of costs,

using the cost matrix provided by the KDD Cup '99.

Additionally, Figure 5.3 shows the di�erent numbers of misclassi�cations

by the tested machine learning algorithms applied to six variants of the dataset

(41/11 features original/preprocessed and 8/4 features preprocessed). The

results show that in terms of misclassi�cations, the decision tree and the neural

134 Chapter 5. Evaluating Static Classifiers for IDS

Figure 5.3: Classi�er performance comparison in terms of the total number of
incorrectly classi�ed instances (false positives + false negatives), using the four
dataset variants with the original 41, 11, 8 and 4 features and preprocessed
respectively. This also shows that the performances of the decision tree and the
neural network classi�er are almost una�ected by excessive feature reduction.

network classi�er show a stable performance almost una�ected by excessive

feature reduction.

Table 5.10 summarises the performance of all results trained with the `10%'

training set and tested on the original test set. The tables include the KDD

Cup '99 challenge winning entry results for convenient comparison with the

�ve classi�ers trained with 41 and 11, original and preprocessed respectively,

and 8 and 4 features preprocessed. The results for the experiments using all

features are summarised in Table 5.6.

We also tested the performance of all classi�ers using the full �ve-million-

record training set with preprocessed 41 and 11 features. No observed

5.8. Performance Analysis with Minimal Feature Sets 135

T
a
b
le
5
.1
0
:
P
er
fo
rm

an
ce

co
m
p
ar
is
on

of
th
e
w
in
n
in
g
re
su
lt
s
of
th
e
K
D
D
C
u
p
`9
9
ch
al
le
n
ge

w
it
h
ou
r
ev
al
u
at
ed

cl
as
si
�
er
s
tr
ai
n
ed

w
it
h
th
e
p
re
p
ro
ce
ss
ed

11
,
8
an
d
4-
fe
at
u
re

se
ts
.
U
si
n
g
th
e
4-
fe
at
u
re

se
t
on
ly
,
th
e
J
4.
8
d
ec
is
io
n
tr
ee

cl
as
si
�
er

ca
n
ke
ep

u
p
it
s

p
er
fo
rm

an
ce
.
In

te
rm

s
of

ac
cu
ra
cy

an
d
co
st
s,
th
e
re
su
lt
s
ar
e
on

th
e
sa
m
e
le
ve
l
as

th
e
K
D
D
C
u
p
`9
9
w
in
n
in
g
en
tr
y.

10
%

cl
as
si
�
er

n
or
m
al

p
ro
b
e

d
os

u
2r

r2
l

se
t

T
P
R

F
P
R

T
P
R

F
P
R

T
P
R

F
P
R

T
P
R

F
P
R

T
P
R

F
P
R

A
C
C

C
O
S
T

1s
t

c5
.9
95

.0
82

.8
33

.0
06

.9
71

.0
03

.1
32

.0
00

.0
84

.0
00

92
.7
1%

.2
33
6

2n
d

d
fo
re
st

.9
94

.0
85

.8
45

.0
02

.9
75

.0
03

.1
18

.0
00

.0
73

.0
00

92
.9
2%

.2
36
2

9t
h

1-
n
n

.9
96

.0
91

.7
50

.0
02

.9
73

.0
05

.0
35

.0
00

.0
06

.0
00

92
.3
3%

.2
53
0

p
n
ru
le

.9
95

.0
89

.7
30

.0
01

.9
70

.0
01

.0
66

.0
00

.1
07

.0
01

92
.5
9%

.2
38
7

11
p

J
4.
8

.9
95

.0
92

.6
65

.0
02

.9
70

.0
03

.1
43

.0
00

.0
57

.0
00

92
.2
6%

.2
47
7

B
ay
es
N
et

.9
88

.0
89

.8
04

.0
10

.9
57

.0
03

.4
71

.0
02

.0
53

.0
02

91
.3
3%

.2
59
6

n
B
ay
es

.8
95

.0
76

.7
20

.1
33

.7
92

.1
16

.1
00

.0
01

.0
85

.0
03

77
.3
9%

.3
97
4

M
L
P

.9
94

.0
91

.7
53

.0
03

.9
71

.0
04

.1
14

.0
00

.0
34

.0
00

92
.2
9%

.2
49
9

S
V
M

.9
90

.0
90

.6
63

.0
01

.9
73

.0
07

.0
00

.0
00

.0
56

.0
00

92
.4
0%

.2
46
5

8p
J
4.
8

.9
95

.0
88

.7
76

.0
02

.9
71

.0
07

.2
57

.0
00

.0
55

.0
00

92
.5
0%

.2
45
0

B
ay
es
N
et

.9
90

.1
16

.8
34

.0
05

.9
33

.0
02

.5
14

.0
04

.0
43

.0
02

89
.6
1%

.2
99
9

n
B
ay
es

.8
94

.0
74

.7
42

.1
38

.7
88

.1
22

.4
71

.0
01

.0
59

.0
02

76
.9
5%

.4
00
1

M
L
P

.9
95

.0
92

.6
48

.0
01

.9
73

.0
12

.0
00

.0
00

.0
00

.0
00

92
.1
8%

.2
54
1

S
V
M

.9
08

.0
89

.6
54

.0
04

.9
68

.0
85

.0
00

.0
00

.0
15

.0
00

90
.1
7%

.2
90
0

4p
J
4.
8

.9
93

.0
88

.7
66

.0
02

.9
73

.0
06

.0
43

.0
00

.0
37

.0
01

92
.4
6%

.2
48
8

B
ay
es
N
et

.9
94

.1
19

.8
26

.0
06

.9
30

.0
04

.1
29

.0
03

.0
14

.0
01

89
.2
7%

.3
07
9

n
B
ay
es

.0
13

.0
05

.7
87

.1
35

.8
16

.9
42

.0
00

.0
00

.0
00

.0
00

61
.6
6%

.6
34
9

M
L
P

.9
87

.0
90

.6
54

.0
05

.9
70

.0
19

.0
00

.0
00

.0
00

.0
00

91
.7
6%

.2
62
5

S
V
M

.1
29

.0
65

.6
23

.0
01

.9
61

.7
75

.0
00

.0
00

.0
00

.0
00

74
.3
8%

.5
46
0

136 Chapter 5. Evaluating Static Classifiers for IDS

classi�ers improve in either feature sets in terms of accuracy or cost. The

total performance is comparable to training with the `10%' dataset.

5.8.2 Individual Attack Classes

In these experiments, we trained the �ve classi�ers with the minimal feature

sets for individual attack classes, as described in Section 4.7. We used the

preprocessed KDD Cup '99 datasets (`10%' training set and `corrected' test

set).

The best-performing classi�er for network probes on the 6 features dataset

set, in terms of detection rate, accuracy and cost, is the neural network. The

three strong classi�ers�decision trees, neural networks and the support vector

machines�all maintain or improve in performance with the reduced feature

sets. The two statistical classi�ers, naïve Bayes and Bayesian networks, both

perform better using all 41 features.

We plotted the ROC curves of the neural network classi�er of all three

tested feature sets. The curves are very similar over wide areas. Calculating

the AUC values con�rms a comparable performance. The ROC curves of the

preprocessed 41, 14 and 6-feature sets are shown in Figure 5.4.

In terms of true positive rate, true negative rate, accuracy and cost,

the results for all applied classi�ers and all three feature sets are shown in

Table 5.11.

For `dos' attacks, the neural network and the decision tree classi�er

both perform well with the 5 feature dataset. Both maintain a high

classi�cation performance with the 11-feature set and with the minimal feature

set in comparison to the full feature set. The SVM classi�er signi�cantly

decreases in performance with the 11-feature set, but only loses slightly on

performance with the 5-feature set. Both statistical classi�ers slightly improve

in performance with the 11-feature set, but the reduction to 5 minimal features

has a strong negative impact.

The ROC curves, with the corresponding AUC values of the neural network

classi�er, are shown in Figure 5.5. The AUC value reveals a noticeable

performance loss in the detection of `dos' attacks due to the feature reduction.

Table 5.12 shows the results of the full preprocessed 41, 11 and 5-feature

5.8. Performance Analysis with Minimal Feature Sets 137

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

corrected test set

Area Under Curve (AUC)
41p: 0.997
14p: 0.997
6p: 0.997

 0.9

 1

 0 0.1

41p
14p
6p

Figure 5.4: This �gure shows the corresponding ROC curves of well-performing
neural networks for classifying network probes using the MLP neural network
classi�er. The similar ROC curves and the equal AUC values show that the classi�er
can keep its performance after feature reduction.

sets.

We had great di�culty �nding a minimal feature set for the `r2l' attacks

class. The performance with the test data su�ered for all classi�ers on

the observed minimal feature sets in the target range of 4�8 features. The

performance of the decision tree classi�er slightly improves when using the 18

and 14-feature sets. All other classi�ers continuously lose performance with

the reduction of features. The neural network and the support vector machine

classi�ers do not detect any attacks on the minimal set.

The ROC curves of the neural network classi�er are presented in Figure 5.6.

138 Chapter 5. Evaluating Static Classifiers for IDS

Table 5.11: Results for detecting network probes using the preprocessed 39 (39p),
14 (14p) and 6 (6p) features with the `10%' training set and KDD Cup '99 test set.
The best-performing classi�er in terms of detection rate, accuracy and cost is the
MLP neural network trained on the 6 preprocessed features.

10% classi�er probe classi�er
set TPR FPR ACC COST

39p J4.8 .779 .005 98.13% .0187
BayesNet .841 .005 98.49% .0151
nBayes .923 .007 98.82% .0118
MLP .844 .004 98.62% .0138
SVM .772 .014 97.23% .0277

14p J4.8 .779 .004 98.18% .0182
BayesNet .813 .006 98.22% .0178
nBayes .882 .007 98.63% .0137
MLP .832 .004 98.56% .0144
SVM .743 .004 97.97% .0203

6p J4.8 .831 .004 98.52% .0148
BayesNet .722 .004 97.82% .0218
nBayes .860 .009 98.23% .0177
MLP .886 .005 98.81% .0119
SVM .815 .006 98.27% .0173

They show that the performance in terms of AUC is similar for the 41 and

18-feature set; but signi�cantly drops on the 14-feature set.

The results of our experiments using the preprocessed 41, 18, 14 and 6

features are shown in Table 5.13.

For the very rare `u2r' attacks, the best-performing classi�er is decision

trees after feature reduction to the 5-feature set. All classi�ers, except

the SVM, improve or maintain their performance with the minimal feature

datasets. The support vector machine classi�er does not detect any attacks

using the minimal feature set.

The observation of the ROC curves, using the neural network classi�er

shown in Figure 5.7, reveals a continuous performance improvement in terms

of AUC.

The results of all observed classi�ers and feature sets in detecting `u2r'

attacks are summarised in Table 5.14.

5.9. Discussion 139

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

corrected test set

Area Under Curve (AUC)
41p: 0.998
11p: 0.980
5p: 0.979

 0.9

 1

 0 0.1

41p
11p
5p

Figure 5.5: This �gure shows the ROC curves of well-performing neural networks
for classifying `dos' attacks using the MLP neural network classi�er. Here, the
decreasing AUC value reveals that the classi�er su�ers from feature reduction.

5.9 Discussion

We applied a variety of machine learning algorithms to the KDD Cup '99

dataset for network intrusion detection. We tested the performance of J4.8

decision trees, naïve Bayes, Bayesian networks, MLP feed forward neural

networks, and support vector machines (SVM). One important outcome is

that in previous work, not enough e�ort was made to prepare the data for

classi�cation. The KDD Cup '99 datasets contain features with non-changing

values and heavily skewed distributions. We added a number of preprocessing

steps that signi�cantly improved the classi�er performance.

140 Chapter 5. Evaluating Static Classifiers for IDS

Table 5.12: Results for detecting `dos' attacks using the preprocessed 39 (39p), 11
(11p) and 5 (5p) features with `10%' training set and KDD Cup '99 test set. The
J4.8 decision tree classi�er and the MLP neural network classi�er perform very well
using the minimal feature set with 5 preprocessed features.

10% classi�er dos classi�er
set TPR FPR ACC COST

39p J4.8 .974 .002 97.88% .0424
BayesNet .968 .001 97.43% .0515
nBayes .970 .024 97.15% .0571
MLP .974 .002 97.91% .0419
SVM .973 .002 97.84% .0433

11p J4.8 .974 .002 97.88% .0424
BayesNet .970 .002 97.59% .0482
nBayes .971 .022 97.22% .0556
MLP .975 .013 97.73% .0454
SVM .842 .015 87.18% .2564

5p J4.8 .977 .003 98.11% .0377
BayesNet .942 .002 95.36% .0928
nBayes .260 .015 41.12% 1.1776
MLP .977 .004 98.12% .0375
SVM .971 .011 97.48% .0503

As expected, the naïve Bayes classi�er is not well-suited to this learning

task. It shows poor performance for all tra�c types. We learned that Bayesian

networks show strengths in the classi�cation of network probes but su�er from

high false alarm rates in general.

J4.8 decision trees, MLP neural networks and the SVM classi�er show

acceptable performance for this type of dataset. The decision tree classi�er

shows strengths in the detection of rare `r2l' and `u2r' attacks. The slight

decrease in detection of `dos' attacks and network probes, which in some

cases comes with feature reduction, is not signi�cant. Due to the number of

connections initiated in series by these attacks, a detection rate of 80% is still

acceptable.

In the 11 feature dataset for multi-class categorisation, the �rst 6 features

are basic (or base) features that can be easily extracted from network tra�c

with very little overhead. The remaining features are connection-based (time-

based and host-based) tra�c features. We were able to dismiss all content-

based features that are much more complex to extract. This is also true

5.9. Discussion 141

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

corrected test set

Area Under Curve (AUC)
41p: 0.601
18p: 0.618
14p: 0.26

41p
18p
14p

Figure 5.6: This �gure shows the ROC curves for classifying `r2l' attacks with well-
performing networks using the MLP neural network classi�er. AUC performance
using the 41 and 18-feature set is similar, but drops using the 14-feature set.

for the 4-feature set. For the 8-feature set, we picked the two content-based

features `hot' and `num_failed_logins' that proved to be valuable for the

detection of the rare attack classes using the decision tree classi�er. In terms

of misclassi�cations, the decision tree and the neural network classi�ers were

able to keep their performance, though at the expense of the reduced detection

of rare attacks.

With the individual attack classes using two-class categorisation, the

observation of information gain per class revealed some interesting facts. For

the three network-related attacks `probe', `dos' and `r2l', the most relevant

142 Chapter 5. Evaluating Static Classifiers for IDS

Table 5.13: Results for detecting `r2l' attacks using the preprocessed 39 (39p), 18,
14 and 6 features with `10%' training set and KDD Cup '99 test set. No classi�er
bene�ts from using the minimal feature sets in the aimed range of 4�8 features.
Only the performance of the decision tree classi�er slightly improves when using the
18 and 14-feature sets.

10% classi�er r2l classi�er
set TPR FPR ACC COST

39p J4.8 .088 .000 80.61% .5815
BayesNet .104 .004 80.70% .5764
nBayes .127 .010 80.69% .5716
MLP .046 .000 79.72% .6084
SVM .092 .000 80.66% .5797

18p J4.8 .088 .000 80.62% .5813
BayesNet .063 .001 80.00% .5991
nBayes .072 .007 79.72% .6027
MLP .037 .000 79.53% .6141
SVM .056 .001 79.90% .6026

14p J4.8 .088 .000 80.62% .5813
BayesNet .065 .001 80.03% .5980
nBayes .054 .007 79.35% .6140
MLP .029 .000 79.34% .6196
SVM .034 .001 79.42% .6168

6p J4.8 .033 .000 79.45% .6164
BayesNet .055 .002 79.76% .6057
nBayes .081 .008 79.87% .5979
MLP .000 .000 78.74% .6377
SVM .000 .000 78.72% .6380

features were basic and connection-based features, with the content features

`logged_in' and `hot' being the only exceptions. The correlations for `r2l'

attacks are mostly weak. The `u2r' attack class is the only attack tra�c class

that very weakly correlates with some content-based features. This shows

that for the detection of local attacks, the dataset is not suitable.

For network probes and `dos' attacks, we achieved a comparable

performance in terms of accuracy and costs after feature reduction, with the

decision tree, neural network and support vector machine classi�er. Observing

the ROC curves for the neural network classi�er reveals a noticeable, but not

signi�cant, performance loss.

Feature reduction with the two rare attack classes `r2l' and `u2r' caused

great di�culty. Overall, we were not able to signi�cantly improve the

5.9. Discussion 143

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

corrected test set

Area Under Curve (AUC)
41p: 0.707
8p: 0.885
5p: 0.984

41p
8p
5p

Figure 5.7: This �gure shows the ROC curves of well-performing neural networks
for classifying `u2r' attacks, using the MLP neural network classi�er. In terms
of AUC performance, there is a signi�cant performance improvement after feature
reduction.

detection of these two attack classes, but at least we could maintain the

performance for most classi�ers. For the `r2l' attacks, only the decision tree

classi�er shows an acceptable performance with the corresponding minimal

feature set. The neural network and the support vector machine requires at

least our proposed 14-feature set to classify any attacks correctly. For `u2r'

attacks, the decision tree classi�er shows at least a noticeable performance

improvement in terms of accuracy and cost with the corresponding minimal

feature set. Unfortunately, the SVM classi�er is not able to classify any attacks

on the reduced feature sets.

144 Chapter 5. Evaluating Static Classifiers for IDS

Table 5.14: Results for detecting `u2r' attacks using the preprocessed 39 (39p), 8
(8p) and 5 (5p) features with `10%' training set and KDD Cup '99 test set. Nearly
all classi�ers improve or maintain their performance on the reduced feature datasets
(exception: SVM).

10% classi�er u2r classi�er
set TPR FPR ACC COST

39p J4.8 .457 .000 99.92% .0028
BayesNet .671 .001 99.86% .0035
nBayes .843 .013 98.67% .0270
MLP .343 .000 99.91% .0033
SVM .357 .000 99.91% .0032

8p J4.8 .371 .000 99.91% .0032
BayesNet .586 .000 99.92% .0026
nBayes .600 .004 99.58% .0092
MLP .371 .000 99.92% .0030
SVM .371 .000 99.91% .0032

5p J4.8 .643 .000 99.96% .0017
BayesNet .371 .000 99.92% .0030
nBayes .543 .001 99.81% .0049
MLP .314 .000 99.92% .0032
SVM .000 .000 99.88% .0046

Further research might reveal that some of these remaining tra�c features

are also dismissible using machine learning algorithms, which are able to

extract time series information.

5.10 Conclusions

In this chapter, we outlined the shortcomings of the DARPA / KDD Cup '99

datasets. We noted previously published results, and presented a performance

comparison of �ve selected static classi�ers, using all available features. The

investigated classi�ers are J4.8 decision trees, naïve Bayes, Bayesian networks,

multilayer perceptron arti�cial neural network (MLP), and support vector

machines (SVM).

The results show signi�cant performance improvements after preprocessing

and data preparation for most of the investigated classi�ers. The only

exception is the Bayesian network, which shows no change in performance.

The gain in performance of the decision tree classi�er is impressive. Our

results supersede the results of the winning entries of the KDD Cup '99.

5.10. Conclusions 145

Experiments observing feature sets using our custom-built, 10,422-instance

training set showed that the basic features and the tra�c features are of salient

importance in terms of accuracy. Our 11-feature set further enhances the

performance of the decision tree classi�er.

In the experiments, training with the `10%' set, we compared our

preprocessed minimal feature sets with 4, 8 and 11 features to the winning

entries of the KDD Cup '99 challenge. The results show a massive reduction

to a small number of salient features where most classi�ers perform very well.

Observing our small sets with preprocessed 4�8 minimal features for individual

attacks reveals similar results.

In the next chapter, we further improve the classi�cation performance

by using a dynamic classi�er that is able to extract time series information.

We apply long short-term memory recurrent neural networks (LSTM) to our

preprocessed KDD Cup '99 data and compare it to the performance of the

static classi�ers.

Chapter 6

Modelling IDS as a Time

Series

Contents

6.1 Introduction . 147

6.2 Experiment Design . 148

6.2.1 Experimental Parameters 148

6.2.2 Network Topology . 151

6.2.3 Parallelisation . 152

6.3 Experiments . 156

6.4 Performance Analysis Using All Features 158

6.4.1 Multi-Class Categorisation 159

6.4.2 Individual Attack Classes 165

6.5 Performance Analysis with Minimal Feature Sets . . 167

6.5.1 Multi-Class Categorisation 168

6.5.2 Individual Attack Classes 169

6.6 Classi�er Performance Comparison 171

6.7 Conclusions . 172

6.1 Introduction

In Chapter 5, we evaluated the performance of static classi�ers. In this

chapter, we model intrusion detection as a time series. Here, we present

the results of our experiments on the KDD Cup '99 dataset, using the LSTM

recurrent neural network classi�er.

We start by outlining the experimental set-up and some notes on LSTM

code parallelisation. Then we give an overview of all experiments performed.

148 Chapter 6. Modelling IDS as a Time Series

In the following sections, we analyse the results of all our experiments using

the LSTM classi�er. We compare LSTM performance using all features and

the minimal feature sets. We analyse the performance of LSTM when training

one network for all tra�c classes, and when training individual networks for

each tra�c class. We conclude this chapter with a performance comparison

of all classi�ers we evaluated with the KDD Cup '99 datasets.

6.2 Experiment Design

We experimented with di�erent parameters and structures of an LSTM

recurrent neural network, such as the number of memory blocks and the cells

per memory block, the learning rate, and the number of passes through the

data. We also ran experiments with a layer of hidden neurons, with peephole

connections, with forget gates, and with LSTM shortcut connections.

6.2.1 Experimental Parameters

As a starting point for �nding suitable network parameters and structure, we

used a basic LSTM network using 43 input neurons and 5 target neurons. The

hidden layer consisted of two LSTM memory blocks, with two cells each and

peephole connections. The input neurons were fully connected to the hidden

layer with the two memory blocks. We did not use shortcut connections.

We applied our customised and preprocessed version of the KDD Cup '99

datasets, using all input features. The `10%' training dataset was used for

training, and the `10% corrected' dataset was used for testing. The number

of iterations for training was �xed at 50 epochs for these experiments.

Each of the �ve target neurons corresponds to one of the �ve network

tra�c types. We tested the target values in the order `normal', `dos', `probe',

`u2r' and `r2l'. The tra�c at this time was simply classi�ed according to

the �rst value larger than the decision threshold. The decision threshold was

�xed to 0.5. We classi�ed cases where no output was larger than the decision

threshold per default as `normal'.

We evaluated the performance of the learned networks by manual

observation of the confusion matrix and by calculating the accuracy.

6.2. Experiment Design 149

In our �rst experiments, we focussed on optimising the learning rate and

evaluating the impact of adding a layer with hidden neurons to the network.

We also experimented with LSTM-speci�c features.

We started by �nding a suitable learning rate for our datasets. The

learning rate was varied in the interval [0.01�0.5], and we did not use any

weight decay.

The experiments with lower learning rates showed a slightly better

classi�cation performance. Naturally, for a low learning rate (0.01), the

expected number of required iterations for low frequency attacks was very

large (>10,000 epochs). As a trade-o� between training time and classi�cation

performance, we decided to set the learning rate to not lower than 0.1 for

following experiments. The best detection rate result for each experiment is

shown in Figure 6.1. We can conclude from these results that 50 epochs are

not su�cient to train `r2l' and `u2r' attacks using any learning rate; but for

the tra�c classes `normal', `dos' and `probe', a learning rate of around 0.1

already provides good results.

In a second step, we experimented with di�erent `pure' feed-forward

networks and hybrid networks, including hidden neurons and LSTM memory

blocks. The number of hidden layers was �xed to one in all experiments.

We did not expect improvements with more than one hidden layer. For both

types of networks, we ran experiments with 5, 10, 15, 20, 32, 43 and 86 hidden

neurons. Each experiment consisted of eight trials.

All LSTM hybrid networks showed good performance in terms of accuracy.

Learning of the hybrid networks was also faster. Best results were

achieved using one feed-forward layer with 20 hidden neurons. All of these

trained networks achieved `good' results with an accuracy value of >90%.

Unfortunately, `best' results are slightly less accurate than well-performing

results using standard LSTM. The generalisation performance of the hybrid

network seems to be weakened in comparison to an LSTM network without

a hidden layer. From this we conclude that adding hidden neurons makes

LSTM more prone to over-�tting. Furthermore, we noted that the detection

rate on rare and `di�cult-to-learn' `r2l' and `u2r' attacks decreased.

Finally, we consecutively added peephole connections and shortcuts to

the basic LSTM network to assess their impact on learning performance.

150 Chapter 6. Modelling IDS as a Time Series

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

at
ta

ck
 d

et
ec

tio
n

ra
te

learning rate

normal
dos
pro
r2l

u2r

Figure 6.1: The detection rate results for all tra�c types using well-performing
LSTM recurrent neural networks, containing two memory blocks with two cells each.
We trained the networks for 50 epochs, with di�erent learning rates, in the interval
between [0.01�0.5]. From the results, we can conclude that we can already get good
results classifying the tra�c classes `normal', `dos' and `probe' when using a learning
rate of around 0.1.

6.2. Experiment Design 151

Adding peephole and shortcut connections did not yield any signi�cant

performance improvements either, but using shortcuts slightly improved the

average classi�cation performance. We activated shortcuts for all further

experiments. We used peephole connections only in some experiments on

the datasets using all features.

6.2.2 Network Topology

To �nd a suitable network structure for training the KDD Cup '99 data,

we experimented with LSTM networks using four di�erent topologies: Two

memory blocks with two cells each; four memory blocks with two cells each;

four memory blocks with four cells each; and eight memory blocks with four

cells each.

All networks used forget gates, peephole connections and shortcuts. The

learning rate was �xed at 0.1, and the decision threshold was set to 0.5.

Tra�c classi�cation was according to the �rst value larger than the threshold

in the order `normal', `dos', `probe', `r2l' and `u2r'. Default classi�cation was

`normal'. We used the preprocessed `10% training' and the `10% corrected'

test set datasets with all features.

To �nd the minimum number of required iterations, we presented the

training data for 5�1000 epochs to each of the four observed network

structures. We ran eight trials of each network setup.

Results with good accuracy for attack detection (attack/normal two-class

categorisation), at reasonable cost in terms of run-time, was reached at 60�

150 epochs. The lowest standard error was reached after little more than 500

epochs for all four network topologies. More complex LSTM networks needed

more iterations to get acceptable results, but �nally also attained a higher

accuracy.

For each of the �ve attack classes, the LSTM network requires a di�erent

number of `optimal' iterations. After 25�90 epochs, most networks learned

`dos' attacks. The detection rate peaks initially at 125 epochs, and then again

at about 500 epochs. Network probes are mostly learned after 50�125 epochs

and also peak at about 500 epochs. The rare attack categories, `r2l' and `u2r',

need many more presentations of the training data. Attacks of the class `r2l'

152 Chapter 6. Modelling IDS as a Time Series

need 200�1,000 epochs, and `u2r' attacks need 125�1,000 epochs before they

are learned as well as possible. We observed that some networks still improve

very slowly on rare attack types after 1,000 epochs. Some of the rare attacks

require more than 1,000 presentations. For us, it remains questionable if they

can be learned at all using the available training data. After 500�600 epochs,

approximately 50% of the trials achieve results with a low error rate. The

total performance of all networks decreases only after further training.

In comparison to standard neural networks with a hidden layer, LSTM

is much more prone to over-�tting. After learning a speci�c tra�c type,

the network improves in memorising the learned tra�c types in the training

data, and the generalisation performance for these continuously decreases.

Naturally, the detection performance of trained networks on the test set

quickly degrades after reaching peak performance for the most frequent tra�c

type, which are, in this case, `dos' attacks.

Out of the eight trials we ran on the four di�erent network structures, we

picked three well-performing networks for further observation. Accuracy for

normal/attack two-class categorisation was used as performance measurement

method.

With increasing size of the LSTM network, learning requires more

presentations of the training data. Rare `r2l' attacks require more than 1,000

epochs on the two larger networks. On the other hand, the small LSTM

network with two memory blocks has problems learning the very rare and

di�cult-to-learn `u2r' attacks.

We think that networks with four memory blocks containing two cells each

o�er a good compromise between calculation cost and detection performance.

We used this type of network structure for all our experiments. Figure 6.2

shows a performance comparison of the best results of the four di�erent

network types evaluated.

6.2.3 Parallelisation

Due to the huge amount of expected processing time for the LSTM

experiments, we decided to improve our LSTM implementation by

parallelising parts of the code. Neural networks o�er great potential for

6.2. Experiment Design 153

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

a
tt

a
c
k
 d

e
c
te

c
ti
o
n

 r
a
te

normal (2M2C)
dos
pro
r2l

u2r
0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

normal (4M2C)
dos
pro
r2l

u2r

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

a
tt

a
c
k
 d

e
c
te

c
ti
o

n
 r

a
te

epochs

normal (4M4C)
dos
pro
r2l

u2r
0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

epochs

normal (8M4C)
dos
pro
r2l

u2r

Figure 6.2: This �gure shows a performance comparison of the four di�erent LSTM
network structures, with 2, 4 and 8 memory blocks, containing 2 and 4 memory
cells respectively (2M2C, 4M2C, 4M4C and 8M4C). Detection rate performance
was measured for each tra�c class according to the number of epochs trained.
Neural networks with four memory blocks containing two cells per block show a
good compromise between calculation cost and detection performance.

154 Chapter 6. Modelling IDS as a Time Series

parallelisation. To keep things simple, we decided to make use of the fact

that neural networks require multiple runs. Each run starts with di�erent

random start values, followed by a manual selection of the `best' result.

6.2.3.1 Thread Parallelisation Using OpenMP

Most of today's workstation computers contain at least one processor with

two or more CPU cores. All CPU cores share main memory. A program that

is processed in sequential order can make use of only one processing core.

Most programs contain sections that could be executed in parallel. OpenMP

provides an intuitive way of manually marking these parallel sections for the

compiler to generate parallel executable code for these sections.

A program marked with OpenMP directives contains one `master' thread

that requires consecutive execution. This master thread can call a number of

`slave' threads when it comes to a parallel section of the program. `Slave'

threads can run concurrently on di�erent processing cores. When the

execution of the parallel code section �nishes, the `slave' threads merge back

into the one `master' thread.

In our implementation, every trial runs in its own thread, having its own

private copies of global variables and also private pointers to the records

of the datasets. Running the trials as separate programs would require

separate copies of the datasets for each trial. We achieved major performance

improvements using OpenMP parallelisation.

6.2.3.2 Compiler Optimisation

Today's C++ compiler suites o�er a variety of powerful optimisation features.

Compiler options strongly depend on the architecture where optimisation is

executed and also on the code to be optimised. We conducted a number of

experiments on two machines:

• HP Prolient 365DL, with an AMD Opteron 2222@3 GHz, 2 Processors

(4 Cores), 32 GB Memory, 64-bit Debian GNU/Linux

• Custom-built Workstation, with Intel Core2 6600@2.40 GHz, 1

Processor (2 Cores), 3 GB Memory, 32-bit Debian GNU/Linux

6.2. Experiment Design 155

We used the GNU Compiler Collection (gcc 4.2.3) and Intel's C++ Compiler

(icc 10.1 20080112).

We built an LSTM network with 43 input neurons, 4 memory blocks, 4

memory cells per block, 4 hidden neurons, and 5 output neurons, running 4

trials with 10 epochs each.

We used the KDD Cup '99 `10%' dataset containing 494,021 connection

records as a training dataset. The `10% corrected' dataset was used as a test

set. These datasets contained all features available. Attacks were mapped to

the �ve tra�c types (`normal', `probe', `dos', `r2l', `u2r'). All features were

preprocessed, as described in Section 4.5.1.

To measure the performance, we used the GNU/Linux time command.

We noted the total number of CPU-seconds that the process spent on a single

CPU in user mode, and calculated to maximum speed-up using all processor

cores.

The ICC compiler already optimises execution performance by default,

without any options given; GCC only optimises if requested.

We got the best CPU performance per core on the Intel Core2 CPU

using the Intel ICC compiler with the options -O3 -us -funroll-loops -ip -

ipo -xT -parallel. Using the GCC compiler, we got the best performance

on the AMD Opteron CPU using the options -O3 -mtune -opteron -march -

opteron -m64 -lm -�nline-functions -�ast-math -pro�le-use -foptimize-register-

move -fprefetch-loop-arrays -funroll-loops -static -ftree-vectorize. In both set-

ups, after parameter-tuning the performance, the Intel compiler exceeded the

performance of the GCC compiler by approximately 20%.

Surprisingly, the thread distribution of OpenMP does not have a

negative impact on the single core performance. The run-time performance

improvement of LSTM code compiled with the ICC compiler was

approximately 50% in comparison with code compiled with the GCC compiler.

We �nally used the ICC compiler on the AMD Opteron architecture, due to

the larger number of available CPU cores and memory on the system.

Results of the run-time performance comparison are shown in Table 6.1.

It shows that in comparison to the default compiler settings, we achieved a 4

to 8 times performance improvement using OpenMP directives, pro�ling and

other compiler-speci�c optimisations.

156 Chapter 6. Modelling IDS as a Time Series

Table 6.1: Run-time performance comparison using automatically (-O1-3) and
manually selected compiler options on AMD Opteron architecture using 64-bit
GNU/Linux. In comparison to the default compiler settings, we achieved a 4 to
8 times performance improvement using OpenMP directives, pro�ling and other
compiler speci�c optimisations.

Dual-Core AMD Opteron 3 GHz, 2 CPU, 32 GB Mem. 64-bit Debian GNU/Linux
compiler options OpenMP/ user-mode CPU max. user-mode CPU

pro�ling in s (single-core) cores in s (multi-core)
gcc-4.2.3 none O/0 895.03 1 895.03

-O1 O/O 720.57 1 720.57
-O2 O/O 704.01 1 704.01
-O3 O/O 722.71 1 722.71
-O3 X/O 718.81 4 179.70

custom∗ X/X 473.98 4 118.50
icc 10.1 none O/O 387.47 1 387.47

-O1 O/O 572.32 1 572.32
-O2 O/O 386.89 1 386.89
-O3 O/O 387.22 1 387.22
-O3 X/O 406.41 4 101.60

custom∗∗ X/X 381.12 4 95.28
∗-O3 -mtune=opteron -mcpu=opteron -m64 -lm -�nline-functions -�ast-math

-pro�le-use -foptimize-register-move -fprefetch-loop-arrays
-funroll-loops -static -ftree-vectorize

∗∗-O3 -xW -ipo -ip -static -us -p -funroll-loops -parallel -prof_use

6.3 Experiments

In all our experiments, we built LSTM networks with four memory blocks,

containing two memory cells each. We used forget gates and shortcut

connections, and we also experimented with peephole connections. The

applied learning rates were 0.5 or 0.1. In some experiments, we applied an

exponential learning decay of 0.99 or 0.999. We limited learning to a maximum

of 1,000 epochs and 30 trials. For training, we used the preprocessed `10%'

training dataset. We tested the performance on the training set as well as

on the `10% corrected' test set. The preprocessed datasets are described in

Section 4.5.1.

We presented the training data to the LSTM networks in a continuous

input stream. For every presented tra�c type, we ran a forward pass, a

backward pass and updated all the weights. We reset the network state at

the beginning of each presentation of the training dataset. It was the task of

6.3. Experiments 157

the network to learn to predict the correct tra�c class. We used the target

output with the highest numerical value for tra�c classi�cation.

For every performance test on a dataset, we generated a 5×5 confusion

matrix and calculated the accuracy and the mean squared error. By evaluating

the confusion matrix, we calculated precision and detection rate for each target

neuron representing one of the �ve tra�c classes. Additionally, we calculated

the AUC value for each target neuron. We generated the ROC curves directly

from the parametric points without using any non-parametric estimation. We

got the parametric points by varying a threshold over the output of the target

neuron.

For the ROC calculations, we used the library version of the proproc.2.8.0

software [Pesce & Metz 2007] and [Metz et al. 2009]. The proproc software

and excellent support was kindly provided to us by the developers.

We trained LSTM networks and ran performance tests for (1) all features

for all attacks in a single network, (2) all features for all attacks in di�erent

networks, (3) minimal features for all attacks in a single network, and (4)

minimal features for individual attacks in individual networks.

An overview of all experiments is summarised in Table 6.2.

Table 6.2: Overview of all performed experiments. We ran 30 trials of every
experiment. All LSTM networks were trained for up to 1,000 Epochs.

features attacks learning rate decay
all all 0.1 -
all all 0.1 0.999
11 all 0.5 0.990
8 all 0.1 0.999
4 all 0.1 0.999
5 dos 0.5 0.990
6 probe 0.5 0.990
5 u2r 0.5 0.990
8 u2r 0.5 0.990
6 r2l 0.5 0.990
14 r2l 0.5 0.990
14 r2l 0.1 0.999

158 Chapter 6. Modelling IDS as a Time Series

6.4 Performance Analysis Using All Features

We ran two experiments, using all features, for training LSTM recurrent neural

networks with all attack classes. The aim of the �rst experiment was twofold:

On the one hand, we plotted ROC curves to con�rm that LSTM is actually

able to correctly classify all �ve tra�c classes in the training data. On the

other hand, we estimated the minimum required training epochs for each

tra�c class.

We trained networks for 25, 50, 75, 90, 100, 125, 150, 175, 200, 250, 300,

400, 500, 600, 750 and 1,000 epochs, with 30 trials each, adding up to a

total of 30×16=480 experiments. We built LSTM networks with peephole

connections and a �xed learning rate of 0.1.

We tested the performance of the trained neural network at the end of each

trial. For every test, we calculated the AUC values for every target neuron

and saved the sequence of empirical operating points to plot the ROC curves.

We used all features of the preprocessed datasets, except two features with

non-changing values in the training data. This left us with 39 input features,

which we mapped to an input layer of size 40. We mapped the target feature,

categorising one of the �ve tra�c classes, to �ve target neurons.

In the second experiment, we focused on training well-performing

networks. Here, we directly calculated the AUC values, without saving the

parametric points for the ROC curves. This dramatically reduced the amount

of collected data. We kept the previously selected network architecture and

parameters, but removed the peephole connections because they showed no

bene�t.

Furthermore, we added an exponential decay to the learning rate. We

initialised the learning rate to either 0.5 or 0.1, and set an exponential decay

of either 0.99 or 0.999. We multiplied the decay by the learning rate after

every presentation of the training data.

Generally, training was stopped after 1,000 epochs, or after 300 epochs if

this proved to be su�cient.

6.4. Performance Analysis Using All Features 159

6.4.1 Multi-Class Categorisation

We �rst analysed the results of the �rst experiment to �nd the best-performing

LSTM network trained using all features and attack types. We observed all the

trained LSTM networks in terms of ROC performance. Since multi-class ROC

graphs are not able to be plotted, we examined the �ve target neurons of every

trained LSTM network separately. For each neuron, we generated a separate

ROC graph and calculated the corresponding AUC value, representing one of

the �ve tra�c classes: `normal', `dos', `probe', `r2l' and `u2r'.

For the majority of trained networks, we found that the target neurons

representing normal tra�c and network probes showed an excellent ROC

performance. The 10 highest AUC values achieved for normal tra�c results

were in the range between [0.9665�0.9716], and for network probes, in the

range between [0.9679�0.9826]. The corresponding ROC curves are shown in

Figures 6.3 and 6.4.

The target neuron representing `dos' attacks achieves a close to perfect

discrimination between `dos' attacks and other tra�c classes (perfect = AUC

value equal to 1.0) in well-performing networks. Here, the 10 highest AUC

values are in the range between [0.9950�0.9971]. The corresponding ROC

curves are shown in Figure 6.5.

For `u2r' attacks, we still achieved a good ROC performance. The 10

networks with the highest AUC values have a range of [0.8766�0.8909]. `r2l'

attacks proved to be the most di�cult to classify in the test set. The 10

highest AUC values, in the range between [0.5380�0.5627], all show a poor

performance. We also note that only 60% of all trained networks showed

any classi�cation performance better than random guessing. The Figures 6.6

and 6.7 show the corresponding ROC plots.

A derivation of the curves from a straight diagonal between the coordinates

[0,0] and [1,1] to a curve bowing into the corner [1,0] of the graph is

recognisable in all graphs. This shows that the trained networks were actually

able to learn at least parts of all �ve tra�c classes.

The partially bumpy ROC curves are expected, since we present whole

classes of tra�c where every class contains various subclasses of tra�c. During

the learning process, distinguishable subclasses do appear as bumps in the

160 Chapter 6. Modelling IDS as a Time Series

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

4Memblocks/2Cells, 10% training set, corrected test set

 0.9

 1

 0 0.1

Figure 6.3: ROC curves of 10 well-performing networks for the target neuron
representing the tra�c class containing `normal' tra�c. The corresponding
AUC values are in the range between [0.9665�0.9716]. This shows a very good
classi�cation performance in terms of AUC.

ROC graph. The curves for network probes and `dos' attacks show that the

classi�er separates at least two subclasses.

Further analysing the results of the �rst experiment, we noted that we

have to address LSTM's strong tendency for over-�tting. We did this by

signi�cantly increasing the number of performance tests within each trial.

In this second, extended experiment on the datasets, we changed our testing

procedure by freezing the weights after each epoch and testing the performance

on the training and the test set, which led to much better results.

From these experiments onwards, we also added mean squared error, to

6.4. Performance Analysis Using All Features 161

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

4Memblocks/2Cells, 10% training set, corrected test set

 0.8

 0.9

 1

 0 0.1 0.2

Figure 6.4: ROC curves of 10 well-performing networks for the target neuron
representing the tra�c class containing network probes. The corresponding AUC
values are in the range [0.9679�0.9826]. In terms of AUC, this shows a very good
classi�cation performance. The bumpy curves are an indication that this class
contains distinguishable subclasses of tra�c.

accuracy and AUC, as standard performance measures; but due to the large

amounts of resulting data, we discarded the empirical operating points for the

ROC curves after calculating the AUC values.

To train LSTM networks with all features and all attack classes, we used

the same datasets as in the �rst experiment. We ran 30 trials, for 1,000 epochs

each, with a learning rate of 0.1 and a decay of 0.999. We also experimented

with a learning rate of 0.5 and 0.1, with a decay of 0.99 each, but the results

did not show any performance improvements and are, therefore, not further

162 Chapter 6. Modelling IDS as a Time Series

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

4Memblocks/2Cells, 10% training set, corrected test set

 0.8

 0.9

 1

 0 0.1 0.2

Figure 6.5: ROC curves of 10 well-performing networks for the target neuron
representing the tra�c class containing `dos' attacks. The corresponding AUC
values are in the range [0.9950�0.9971], which shows a close to perfect discrimination
between `dos' attacks and other tra�c classes.

considered.

The investigated experimental con�guration for training LSTM networks

with all features and all attacks showed good results in terms of MSE and

accuracy. The 10 lowest MSEs achieved on the test data in 30 trials are in the

range [0.0259�0.0293]. The average MSE, picking the result with the lowest

MSE of each trial, is 0.0308.

The average AUC values for the �ve tra�c classes are 0.961 (`normal'),

0.991 (`dos'), 0.969 (`probe'), 0.321 (`r2l') and 0.842 (`u2r'). This shows

an excellent performance of the trained LSTM networks, which successfully

6.4. Performance Analysis Using All Features 163

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

4Memblocks/2Cells, 10% training set, corrected test set

Figure 6.6: ROC curves of the 10 LSTM networks with the highest AUC values
for the target neuron representing the tra�c class containing `r2l' attacks. The
corresponding AUC values are in the range between [0.5380�0.5627]. This shows a
rather poor ROC performance.

classi�ed `dos' attacks.

The performance in detecting `normal' tra�c, network probes and `u2r'

attacks is likewise very good. The AUC performance in classifying `r2l' attacks

is poor. Only a few networks learn to classify `r2l' attacks with a performance

better than guessing.

Table 6.3 shows the top �ve best-performing values in terms of MAUC.

The table also includes the corresponding AUC and MSE values, and the

minimum, average and 95% con�dence interval over 30 trials of the test data.

164 Chapter 6. Modelling IDS as a Time Series

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

4Memblocks/2Cells, 10% training set, corrected test set

Figure 6.7: ROC curves of 10 well-performing networks for the target neuron
representing the tra�c class containing `u2r' attacks. The corresponding AUC
values are in the range between [0.8766�0.8909], which shows an acceptable ROC
performance.

Picking a network with a very low MSE of 0.0259, the �ve AUC values are

0.959 (`normal'), 0.997 (`dos'), 0.955 (`probe'), 0.241 (`r2l') and 0.821 (`u2r').

Here, we see an exceptional performance of the LSTM network on `dos' attacks

and an above-average performance on normal tra�c. This is expected since

most connection records in training and test data are related to either `dos'

attacks or normal tra�c. All other tra�c classes show an AUC performance

below average. This also re�ects in a MAUC value of 0.949, which is slightly

below average.

Nevertheless, in terms of costs and accuracy, our trained network still

6.4. Performance Analysis Using All Features 165

Table 6.3: Summary of test results for training LSTM networks with all features
for all tra�c classes in one network. The classi�cation performance in terms of AUC
for `normal' tra�c, network probes and `r2l' attacks is very good. The performance
for classifying `dos' attacks is exceptional. Only a few networks learn to classify `r2l'
tra�c with a performance beyond guessing.

MSE AUC MAUC
normal dos probe r2l u2r

1 .030 .982 .994 .944 .617 .842 .971
2 .030 .954 .995 .990 .564 .796 .964
3 .031 .956 .989 .992 .604 .927 .962
4 .029 .976 .994 .965 .430 .833 .960
5 .031 .966 .990 .913 .473 .897 .957

min. .029 .937 .982 .908 .186 .584 .935
avg. .031 .961 .991 .969 .321 .842 .950

95% conf. .956 .989 .960 .276 .812 .946
interval .965 .992 .979 .366 .872 .953

outperforms the high-scoring entries of the KDD Cup '99 challenge. With

93.82% accuracy and 22.13 cost, our network is far ahead in �rst place in

comparison to the winning entries of the KDD Cup '99 challenge. LSTM

correctly classi�ed 291,811 out of 311,029 instances from the test set. Our

result outperforms the KDD Cup '99 winning entry by impressive 3,462

instances.

Observing the results in the confusion matrix shown in Table 6.4, we note

the very good true positive rates and precision of `dos' attacks and `normal'

tra�c. The true positive rate and precision for network probes and `u2r'

attacks are also acceptable. Unfortunately, the result for `r2l' attacks does

not excel at all in this network.

6.4.2 Individual Attack Classes

Next, we looked for LSTM networks trained with all features, for all attacks,

but performing well on the individual detection of one out of four attack

classes. We sorted all trained networks in descending order, according to the

AUC value of the target neuron representing the observed attack class. For

each attack class, we picked the one network having the highest AUC value

for one of the �ve target neurons. We evaluated all trained networks stored

after every training epoch.

166 Chapter 6. Modelling IDS as a Time Series

Table 6.4: Confusion matrix of LSTM network trained with all features and all
attacks having the lowest MSE on test data. True positive rates and precision of
`dos' attacks and `normal' tra�c are exceptional. True positive rate and precision
for network probes and `u2r' attacks are also acceptable. The result for `r2l' attacks
does not excel in this network.

ac
tu
al

prediction
normal probe dos u2r r2l TPR (DR) AUC

normal 60272 233 81 6 1 0.995 0.959
probe 898 3156 111 1 0 0.758 0.955
dos 1262 233 228358 0 0 0.993 0.997
u2r 58 0 0 12 0 0.171 0.821
r2l 15828 106 399 1 13 0.001 0.241

PRECISION 0.770 0.847 0.997 0.600 0.929 COST: 0.2213
FPR (FAR) 0.072 0.002 0.007 0.000 0.000 ACC: 93.82%

The maximum AUC values achieved for the classi�cation of the �ve tra�c

classes in the test data are 0.982 (`normal'), 0.997 (`dos'), 0.997 (`probe'), 0.877

(`r2l') and 0.974 (`u2r'). These results show that LSTM achieves excellent

AUC values for `normal' tra�c, `dos' attacks and network probes, and good

AUC values for the remaining two tra�c types. From this, we conclude that

a signi�cant number of the corresponding connection records are correctly

identi�ed.

That LSTM successfully learns all tra�c classes is con�rmed by observing

the training data. As expected, we achieved remarkably high AUC values for

the training data for all �ve tra�c classes: >0.999 (`normal'), >0.999 (`dos'),

>0.995 (`probe'), 0.987 (`r2l') and 0.987 (`u2r'). But when comparing these

results to the AUC performance for the test data, we also note a signi�cant

degradation of classi�cation performance on `r2l' attacks. This shows that for

these attacks, LSTM has major di�culties generalising from the training data

to the test data.

Table 6.5 shows the best �ve results in terms of AUC, and the minimum,

average and the 95% con�dence interval over 30 trials. The table also shows

the corresponding MSE values.

6.5. Performance Analysis with Minimal Feature Sets 167

Table 6.5: Summary of test results for LSTM training with all features for all
tra�c classes in di�erent networks. The AUC values achieved for the classi�cation
of the �ve tra�c classes in the test data are remarkably high. But when comparing
these results to the AUC performance on the test data, we note that for `r2l' attacks,
LSTM has major di�culties generalising from the training data to the test data.

MSE AUC MSE AUC MSE AUC MSE AUC MSE AUC
normal dos probe r2l u2r

1 .033 .982 .031 .997 .072 .997 .034 .877 .031 .974
2 .031 .982 .031 .997 .063 .997 .031 .765 .030 .974
3 .031 .981 .032 .996 .031 .994 .032 .722 .041 .974
4 .032 .981 .029 .996 .062 .993 .056 .562 .029 .972
5 .041 .980 .031 .996 .032 .993 .071 .515 .061 .968

min. .029 .960 .029 .984 .029 .972 .029 .272 .029 .916
avg. .047 .973 .039 .994 .053 .987 .053 .435 .053 .952

95% conf. .971 .993 .985 .384 .946
interval .976 .995 .989 .486 .959

6.5 Performance Analysis with Minimal

Feature Sets

For the detection of all attack classes using minimal feature sets, we used

previously extracted minimal sets. The minimal sets used for training all

attacks in a single LSTM network consisting of 11, 8 and 4 features. The

extraction of these features is described in detail in Section 4.6. In the 11-

feature set, the input features were mapped to an input layer of size 12. The

8 and 4-feature sets had input layers with a size equal to the number of used

features.

We ran 30 trials to train LSTM networks with the 11-feature set. Applying

a learning rate of 0.5 and a decay of 0.99, we ran 30 trials for 1,000 epochs.

On the 8 and 4-feature sets, we also ran 30 trials for 1,000 epochs each. They

applied a learning rate of 0.1 and a decay of 0.999.

The detection of individual attacks in individual networks was carried out

with the minimal sets for individual attacks, as described in Section 4.7. In

these experiments, all input layers were equal-sized to the number of used

features.

We ran 30 trials per tra�c class and trained feature set. Every trial ran

for 1,000 epochs, with a learning rate of 0.5 and a decay of 0.99.

168 Chapter 6. Modelling IDS as a Time Series

6.5.1 Multi-Class Categorisation

Using the 11 and 8-feature sets, all trials show good results in terms of

accuracy and MSE. With the 4-feature set, we still get good results for

approximately half of the trials (14/30). The lowest MSE found for 11, 8 and 4

features are 0.029, 0.025 and 0.024 respectively, with an average MSE of 0.031,

0.029 and 0.070. Here, we see the tendency of a performance improvement

towards the smaller feature sets. But with the 4-feature set, there also comes

the disadvantage of a decreasing yield of well-performing networks. This shows

that LSTM has increasing di�culty learning to classify the data by using only

4 features.

In terms of MAUC, the LSTM networks trained with 8 features show the

best results. In terms of AUC, the results show that LSTM learns to classify

the tra�c classes `normal', `probe' and `u2r' very well. Once again, the results

for classifying `dos' attacks are exceptional. Few networks learn to classify few

`r2l' attacks. The top �ve networks are shown in Table 6.6.

Table 6.6: Summary of test results for LSTM training with 8 features for all tra�c
classes in one network. In terms of AUC LSTM learns very well to classify the
tra�c classes `normal', `probe' and `u2r'. The results for classifying `dos' attacks
are exceptional. Only some networks learn to classify few `r2l' attacks.

Rank MSE AUC MAUC
normal dos probe r2l u2r

1 .025 .985 .999 .875 .811 .939 .985
2 .030 .981 .998 .928 .788 .772 .983
3 .029 .973 .995 .952 .720 .804 .976
4 .026 .969 .995 .947 .517 .954 .964
5 .031 .984 .991 .949 .423 .809 .959

min. .025 .962 .970 .714 .128 .678 .932
avg. .029 .977 .990 .920 .338 .819 .952

95% conf. .974 .986 .902 .268 .790 .947
interval .979 .993 .939 .408 .849 .957

We note that the LSTM networks trained with the 4 and 8-feature sets for

all attacks in one network are superior to the results of all other non-LSTM

classi�ers and the winning entries of the KDD Cup '99 challenge in terms

of accuracy and costs. The results are 93.69% accuracy and 22.29 costs for

the 8-feature set, and 93.72% accuracy and 22.24 costs for the 4-feature set.

6.5. Performance Analysis with Minimal Feature Sets 169

Compared to the LSTM network trained with all features, we note that these

values almost match its performance. The network trained with the 11-feature

set o�ers 92.50% accuracy and 24.45 costs, a competitive performance with an

improved result in comparison to the other classi�ers trained with 11 features.

The confusion matrices for the networks trained with 4 and 8 features show

that the outstanding total performance is mainly due to an excellent detection

of `dos' attacks. The true positive rate for network probes is acceptable, taken

into account that some probes are wrongly categorised as `dos' attacks. The

detection of `r2l' attacks is poor. For this type of attack, the 11-feature set

provides a slightly better performance. The `u2r' attacks are not detected by

LSTM using any of the reduced feature sets for all attacks in one network.

The results of the best-performing LSTM networks trained with the 11, 8

and 4-feature sets for all attacks in one network are presented in the form of

confusion matrices in Tables 6.7, 6.8 and 6.9.

Table 6.7: Confusion matrix of LSTM network trained with 11 features and all
attacks having the lowest MSE on test data. This network shows a slightly better
performance for classifying `r2l' attacks than other trained networks using reduced
feature sets.

ac
tu
al

prediction TPR AUC
normal probe dos u2r r2l (DR)

normal 59630 350 396 2 215 0.984 0.956
probe 831 3052 281 0 2 0.733 0.948
dos 5749 57 224047 0 0 0.975 0.995
u2r 59 0 0 0 11 0.000 0.840
r2l 15270 19 75 0 983 0.060 0.491

PRECISION 0.731 0.878 0.997 0.000 0.812 COST: 0.2445
FPR (FAR) 0.087 0.001 0.009 0.000 0.001 ACC: 92.50%

6.5.2 Individual Attack Classes

Using the minimal sets for each tra�c class, we tested to see if LSTM performs

even better when classifying individual attacks. The minimum MSE values

found for two-class classi�cation (`normal' / attack class) are 0.0009 (5 features

`dos'), 0.0023 (6 features `probe'), 0.0810 (6 features `r2l'), 0.0727 (14 features

`r2l'), 0.0003 (5 features `u2r'), and 0.0003 (8 features `u2r'). The maximum

170 Chapter 6. Modelling IDS as a Time Series

Table 6.8: Confusion matrix of LSTM network trained with 8 features and all
attacks with the lowest MSE on test data. This network shows an outstanding
overall performance due to an excellent detection of `dos' attacks and an acceptable
classi�cation performance of network probes. The performance of detecting `r2l'
and `u2r' attacks is poor; but the high AUC values suggest there is still potential to
learn them.

ac
tu
al

prediction TPR AUC
normal probe dos u2r r2l (DR)

normal 60161 223 181 0 28 0.993 0.985
probe 1001 2546 619 0 0 0.611 0.875
dos 1217 226 228408 2 0 0.994 0.999
u2r 70 0 0 0 0 0.000 0.939
r2l 15687 169 199 4 288 0.018 0.811

PRECISION 0.770 0.805 0.996 0.000 0.911 COST: 0.2229
FPR (FAR) 0.072 0.002 0.012 0.000 0.000 ACC: 93.69%

Table 6.9: Confusion matrix of LSTM network trained with 4 features and all
attacks with the lowest MSE on test data. This network shows an outstanding
overall performance due to an excellent detection of `dos' attacks and a still
acceptable performance for classifying network probes.

ac
tu
al

prediction TPR AUC
normal probe dos u2r r2l (DR)

normal 60182 154 221 0 36 0.993 0.967
probe 889 2348 928 0 1 0.564 0.870
dos 723 195 228935 0 0 0.996 0.993
u2r 68 0 2 0 0 0.000 0.751
r2l 16229 9 81 0 28 0.002 0.304

PRECISION 0.771 0.868 0.995 - 0.431 COST: 0.2264
FPR (FAR) 0.072 0.001 0.015 0.000 0.000 ACC: 93.72%

AUC values achieved are 0.9977 (5 features `dos'), 0.9990 (6 features `probe'),

0.8724 (6 features `r2l'), 0.8826 (14 features `r2l'), 0.9922 (5 features `u2r'),

and 0.9909 (8 features `u2r').

Feature reduction did not have a negative e�ect on the classi�cation of

`dos' attacks. Here, the MSE and AUC performance remains excellent. The

classi�cation performance of the three other attack classes improves after

feature reduction. In terms of AUC, the improvement for `r2l' and `u2r'

attacks is remarkable. These results show that feature reduction and the

training of individual networks do have a strong positive e�ect.

The best �ve networks in terms of AUC for LSTM networks trained with

6.6. Classi�er Performance Comparison 171

the minimal feature sets for individual attack classes in individual networks

are shown in Table 6.10.

Table 6.10: Summary of test results for LSTM training with minimal features for
individual attack classes in individual networks. Feature reduction did not have a
negative e�ect on the classi�cation of `dos' attacks. The classi�cation performance of
the three other attack classes improves after feature reduction. These results show
that feature reduction and the training of individual networks do have a strong
positive e�ect.

MSE AUC MSE AUC MSE AUC MSE AUC
dos (5 feat.) probe (6 feat.) r2l (14 feat.) u2r (5 feat.)

1 .005 .998 .002 .999 .085 .883 .000 .992
2 .002 .997 .002 .999 .085 .857 .000 .992
3 .007 .997 .003 .999 .085 .856 .000 .992
4 .001 .997 .003 .999 .085 .850 .000 .992
5 .011 .997 .003 .999 .085 .845 .000 .992

min. .001 .989 .002 .998 .082 .605 .000 .991
avg. .082 .995 .004 .998 .084 .788 .000 .992

95% conf. .994 .998 .761 .991
interval .996 .999 .815 .992

6.6 Classi�er Performance Comparison

To compare the performance of the LSTM classi�er to the classi�ers evaluated

in Chapter 5, we picked trained networks with high AUC values and

competitively high true positive rates for each tra�c type. This reveals more

interesting details. In terms of true positive rate, false positive rate, precision,

accuracy and cost, the performance of the LSTM classi�er is superior at

detecting `dos' attacks and network probes. The results for detecting `r2l' and

`u2r' attacks are indeed very competitive, but do not match the performance

of the very well-performing decision tree classi�er.

For network probes, `dos' attacks and `r2l' attacks, LSTM sacri�ces

precision for an improved true positive rate, when training with the minimal

sets. Only for `u2r' attacks does LSTM improve noticeably with a reduced

feature set. Compared to the performance of other trained classi�ers on the

minimal set, we note that for `dos' attacks and network probes, LSTM is

superior in terms of true positive rate, false positive rate, precision, accuracy

172 Chapter 6. Modelling IDS as a Time Series

and cost. For `r2l' attacks trained with 6 and 14 features, LSTM clearly

outperforms the two other neural network-based classi�ers (SVM, MLP).

The per-class performance results of LSTM networks trained with all

features and minimal feature sets, in comparison with all other trained

classi�ers, are presented in Tables 6.11 (`dos'), 6.12 (`probe'), 6.13 (`r2l')

and 6.14 (`u2r').

Table 6.11: Performance comparison of `dos' attack detection using the
preprocessed full feature set and the 5-feature minimal set (5p). LSTM outperforms
all other classi�ers by far. Peak performance is shown by using the minimal set.

dataset classi�er dos ACC COST
10% set TPR FPR

39p J4.8 0.974 0.002 97.88% 0.0424
BayesNet 0.968 0.001 97.43% 0.0515
nBayes 0.970 0.024 97.15% 0.0571
MLP 0.974 0.002 97.91% 0.0419
SVM 0.973 0.002 97.84% 0.0433
LSTM 0.993 0.001 99.46% 0.0109

5p J4.8 0.977 0.003 98.11% 0.0377
BayesNet 0.942 0.002 95.36% 0.0928
nBayes 0.260 0.015 41.12% 1.1776
MLP 0.977 0.004 98.12% 0.0375
SVM 0.971 0.011 97.48% 0.0503
LSTM 0.998 0.004 99.78% 0.0044

6.7 Conclusions

In this chapter, we evaluated the performance of the LSTM recurrent

neural network classi�er applied to the preprocessed KDD Cup '99 datasets.

We discussed the selected experimental parameters and the chosen LSTM

network topology. Furthermore, we made some notes on improving LSTM

performance.

We ran experiments, training all attacks in a single LSTM network, and

training individual networks for each attack class. We used both the full

feature and minimal feature sets. Finally, we compared the results achieved

to the performance of the classi�ers tested in Chapter 5.

6.7. Conclusions 173

Table 6.12: Performance comparison of all tested classi�ers for network probe
detection using the preprocessed full feature set and the 6-feature minimal set (6p).
LSTM shows a superior performance. Peak performance is shown using the minimal
set.

dataset classi�er probe ACC COST
10% set TPR FPR

39p J4.8 0.779 0.005 98.13% 0.0187
BayesNet 0.841 0.005 98.49% 0.0151
nBayes 0.923 0.007 98.82% 0.0118
MLP 0.844 0.004 98.62% 0.0138
SVM 0.772 0.014 97.23% 0.0277
LSTM 0.937 0.004 99.22% 0.0078

6p J4.8 0.831 0.004 98.52% 0.0148
BayesNet 0.722 0.004 97.82% 0.0218
nBayes 0.860 0.009 98.23% 0.0177
MLP 0.886 0.005 98.81% 0.0119
SVM 0.815 0.006 98.27% 0.0173
LSTM 0.964 0.004 99.35% 0.0065

Table 6.13: Performance comparison of `r2l' attack detection using the
preprocessed full feature set, the 14-feature set (14p) and the 6-feature minimal
set (6p). LSTM is the best-performing classi�er, although all classi�ers show a poor
performance. Best results are achieved using the 14-feature set.

dataset classi�er r2l ACC COST
10% set TPR FPR

39p J4.8 0.088 0.000 80.61% 0.5815
BayesNet 0.104 0.004 80.70% 0.5764
nBayes 0.127 0.010 80.69% 0.5716
MLP 0.046 0.000 79.72% 0.6084
SVM 0.092 0.000 80.66% 0.5797
LSTM 0.055 0.000 79.92% 0.6022

14p J4.8 0.088 0.000 80.62% 0.5813
BayesNet 0.065 0.001 80.03% 0.5980
nBayes 0.054 0.007 79.35% 0.6140
MLP 0.029 0.000 79.34% 0.6196
SVM 0.034 0.001 79.42% 0.6168
LSTM 0.223 0.039 80.41% 0.5568

6p J4.8 0.033 0.000 79.45% 0.6164
BayesNet 0.055 0.002 79.76% 0.6057
nBayes 0.081 0.008 79.87% 0.5979
MLP 0.000 0.000 78.74% 0.6377
SVM 0.000 0.000 78.72% 0.6380
LSTM 0.047 0.001 79.64% 0.6097

174 Chapter 6. Modelling IDS as a Time Series

Table 6.14: Performance comparison of `u2r' attack detection using the
preprocessed full feature set and the 5-feature minimal set (5p). Best-performing
classi�er is the J4.8 decision tree classi�er. The LSTM performance is acceptable.
Peak performance is achieved using the minimal set.

dataset classi�er u2r ACC COST
10% set TPR FPR

39p J4.8 0.457 0.000 99.92% 0.0028
BayesNet 0.671 0.001 99.86% 0.0035
nBayes 0.843 0.013 98.67% 0.0270
MLP 0.343 0.000 99.91% 0.0033
SVM 0.357 0.000 99.91% 0.0032
LSTM 0.357 0.000 99.90% 0.0035

5p J4.8 0.643 0.000 99.96% 0.0017
BayesNet 0.371 0.000 99.92% 0.0030
nBayes 0.543 0.001 99.81% 0.0049
MLP 0.314 0.000 99.92% 0.0032
SVM 0.000 0.000 99.88% 0.0046
LSTM 0.486 0.000 99.93% 0.0026

The LSTM classi�er shows its strengths when training `dos' and `probe'

attacks. These attack classes tend to generate a high volume of consecutive

connection records. Here, LSTM can strongly bene�t from the fact that it

can look back in time and learn to correlate these connections. The two

exploit-based attack classes, `r2l' and `u2r', in most cases, generate only one

connection record. If there is any time series information related to these

attacks hidden between other connection records, it seems to be very di�cult

to extract them. We conclude that LSTM is very suitable for classifying high-

frequency attacks. For very low-frequency attacks, the bene�t of using LSTM

vanishes. Although we should stress that LSTM is still able to compete with

the other classi�ers tested.

This chapter is the �rst reported demonstration of the successful

application of LSTM networks to intrusion detection.

Chapter 7

Conclusions

In this thesis, we have assumed that usage patterns can be used to distinguish

`normal' computer tra�c from network `attacks' and that these patterns can

be learned by a machine. `Static' machine learning methods have been applied

to intrusion detection for quite some time, but so far with very limited success

to previously unseen attack patterns. This holds true especially for intrusions

with a very low pro�le over long time periods.

We set out to show what can be gained by applying a classi�er that is

able to model the time series inherent in the network data. We assumed

that the LSTM recurrent neural network classi�er outperforms static machine

learning methods for modelling network intrusions. To support this claim, we

compared �ve static classi�ers that are known to perform well on the training

data used.

The results presented in Chapter 5 and Chapter 6 con�rm our hypothesis.

LSTM proved to be superior to all other tested classi�ers. It shows its

strengths when classifying attacks that generate a large number of consecutive

connection records, such as network probes and `dos' attacks. Here, our

classi�er bene�ts from the fact that LSTM can look back in time and correlate

these records. LSTM requires only a few presentations of the training data to

learn these attacks (less than 100 epochs). The well-trained LSTM networks

are able to successfully distinguish these attacks from `normal' tra�c using

test data with previously unseen variants of intrusions.

Some LSTM networks do also learn attacks with only a few examples in the

training data, such as `r2l' and `u2r' attacks. Most of these attacks generate

only one record, and here, LSTM requires many more presentations of the

training data. We trained our LSTM networks for up to 1,000 epochs. But

thereafter, most of the learned models su�er from over�tting of the training

data. If there is any time series information related to these attacks hidden in

176 Chapter 7. Conclusions

the training data, it must be very di�cult to extract. For these rare attacks,

the bene�t of LSTM in comparison to the other tested classi�ers vanishes.

Our contributions are manifold:

• Data preprocessing: To prepare the KDD Cup '99 IDS data,

we conducted a detailed analysis of the dataset and presented a

preprocessing framework. After preprocessing, the majority of features

show improved information gain of approximately 20%. Furthermore, all

classi�ers show an improved performance on the preprocessed datasets.

The presented data preparation and preprocessing steps can be applied

to any IDS dataset that may arise in future.

• Salient feature extraction: To reduce the amount of data processed by

the classi�ers, we then presented a number of intuitive steps to detect

and remove unnecessary features. This process starts by ranking all

features using information gain. Then we used a combined approach

of feature reduction based on decision tree pruning, biased backward

elimination and forward selection, and heuristic domain knowledge.

This process was supported by the visualisation of feature distributions

and relationships between features using distribution histograms and

scatter plot matrices. Visualisation proved to be of high value in

identifying features that were candidates for removal. The suggested

technique proved to be very e�ective for �nding small sets of salient

features with 4�8 features.

• Minimal feature sets: The feature reduction process resulted in minimal

feature sets for detecting all attacks and individual attack classes in

two-class and multi-class classi�cation. For detecting all attacks, we

presented feature sets with 11, 8 and 4 features, with the majority of

selected features being basic features, easily extracted from a network

stream. For individual attack classes, we present feature sets with 4�

6 features. For the two rare attack classes, `r2l' and `u2r' attacks, we

additionally presented feature sets with 14 and 8 features respectively.

We show in `X-1' histograms that any further removal of remaining

features leads to a remarkable degradation in performance.

177

• Model network tra�c using static classi�ers: We tested the performance

of �ve very common and well-known classi�ers on the KDD Cup '99 data,

four strong, and one simple probabilistic machine learning method. As

a simple machine learning method, we applied the well-known naïve

Bayes classi�er. For strong machine learning methods, we chose J4.8

decision trees, Bayesian networks, MLP feed-forward neural networks,

and support vector machines (SVM). With all classi�ers using our

preprocessed KDD Cup '99 datasets and our minimal feature sets, we

were able to produce at least competitive results, with a performance

comparable to the winning entries of the KDD Cup '99 challenge.

• Model time series tra�c using the LSTM classi�er: Finally, we applied

our own implementation of the LSTM recurrent neural network classi�er

to the KDD Cup '99 data. The results show that the LSTM classi�er

provides a superior performance in comparison to all other tested static

classi�ers. The strengths are in the detection of `dos' attacks and

network probes, which both produce a distinctive time series of events.

The performance on the attack classes that produce only a few events

is comparable to the results of the other tested classi�ers.

In future research projects, we suggest that the following problems be

addressed:

• Time series of connection records: To bene�t fully from the capabilities

of LSTM network intrusion detection, datasets are required that are

more suited to time series prediction. For this, we need to address at

least the following issues:

� In the DARPA/KDD Cup '99 datasets, the connection records

are ordered according to the timestamp when the connection is

closed, which makes time series analysis unnecessarily di�cult for

the learning algorithm. Therefore, the connection records should

be ordered according to the time at which the �rst packet was sent.

� We used the number of correctly classi�ed connection records as a

performance measure. The results are misleading, because attacks

can generate between one and millions of records. When a speci�c

178 Chapter 7. Conclusions

attack is detected, the number of correctly identi�ed connection

records that are part of the attack needs to be counted for that

attack, and not individually.

� We will not bene�t from LSTM applied to attacks with only a

few related connection records. To detect these attacks, we need to

prepare the network tra�c data in a di�erent way. It is conceivable

to break a communication session into multiple records. For this,

we could use a hybrid approach, taking into account a time-window

and a transferred data threshold.

• Live data: The nature of computer attacks is that they are very dynamic.

Most of the attacks generated during the DARPA IDS evaluation

were already well-known and outdated in the year 1998 when the

evaluation was conducted. Until today, approaches taken for detecting

and addressing attacks have changed several times. Today's attacks are

very di�erent from the attacks of �ve years ago; and in �ve years time,

they will be very di�erent from today. And it is safe to assume that

they will all require di�erent features to be learned.

Intrusion detection systems need to deal with live data, and we need to

understand how to learn using live data. This implies that we should

address the following issues:

� We need to learn how to capture, aggregate and store live tra�c

data on highly utilised, high-performance links.

� Once the collected tra�c data is available o�ine, we need to learn

how to process the data e�ciently into connection records.

� We need to work on the development of a framework that supports

an expert to easily enrich the generated connection records with

additional information. This is for the intuitive building of new

features considered to be relevant for the detection of novel attacks.

This could be processed log information, network �ows and alarms

provided by hosts, syslog servers, switches, routers, �rewalls,

intrusion detection systems, and penetration testing tools.

179

� Next, we need to build a framework that supports an expert to

label connection records in an e�cient way. Using current tools,

this task is so time consuming that until all tra�c necessary to

train a supervised machine learner is labelled, the tra�c is already

far outdated.

• Feature selection: There are other promising feature selection

algorithms. We think that principal component analysis (PCA) is a

worthy candidate. In PCA, we transform a large set of interrelated

variables into a smaller set of new and uncorrelated variables called the

principal components (PCs). They are ordered in such a way that the

�rst few PCs retain most of the variation presented in all of the original

variables.

• Unsupervised learning approach: We experimented in this thesis with

a supervised learning approach. When dealing with live tra�c, another

and possibly more promising option, is to try an unsupervised learning

approach for training LSTM. This also addresses the serious issue of

labelling connection records, since an unsupervised learner does not

depend on labelled training data. However, to evaluate the performance

of the learner, we also need the support of an expert.

• Training `normal' tra�c: The applied test data contains at least two

attacks that cannot be derived from attacks in the training data.

The `smnpguess' and `snmpgetattack', for example, target network

infrastructure devices. These two attacks di�er fundamentally from the

other `r2l' attacks presented in the training data. But at the same time

they generate 50% of all `r2l' connections in the test data. If we want to

detect novel attacks that cannot be derived from any attacks presented

in the training data, we need to train the classi�er to build a model of

`normal' tra�c. This model will then be able extract tra�c which di�ers

from that learned behaviour.

• Build more complex LSTM networks: We expect LSTM to improve

when we increase the number of memory blocks and memory cells, and

lower the learning rate.

Appendix A

Tables and Figures

A.1 KDD Cup '99 Features

A.2 KDD Cup '99 Tra�c Types

A.3 Distribution Histograms

A.4 Scatter Plots

A.5 LSTM Neural Network

182 Appendix A. Tables and Figures

Table A.1: The 41 features provided by the KDD Cup '99 datasets.

Nr features
name description

1 duration duration of connection in seconds
2 protocol_type connection protocol (tcp, udp, icmp)
3 service dst port mapped to service (e.g., http, ftp, etc.)
4 �ag normal or error status �ag of connection
5 src_bytes number of data bytes from src to dst
6 dst_bytes bytes from dst to src
7 land 1 if connection is from/to the same host/port; else 0
8 wrong_fragment number of `wrong' fragments (values 0,1,3)
9 urgent number of urgent packets
10 hot number of `hot' indicators (bro-ids feature)
11 num_failed_logins number of failed login attempts
12 logged_in 1 if successfully logged in; else 0
13 num_compromised number of `compromised' conditions
14 root_shell 1 if root shell is obtained; else 0
15 su_attempted 1 if `su root' command attempted; else 0
16 num_root number of `root' accesses
17 num_�le_creations number of �le creation operations
18 num_shells number of shell prompts
19 num_access_�les number of operations on access control �les
20 num_outbound_cmds number of outbound commands in an ftp session
21 is_hot_login 1 if login belongs to `hot' list (e.g., root, adm); else 0
22 is_guest_login 1 if login is `guest' login (e.g., guest, anonymous); else 0
23 count number of connections to same host as current

connection in past two seconds
24 srv_count number of connections to same service as current

connection in past two seconds
25 serror_rate % of connections that have `SYN' errors
26 srv_serror_rate % of connections that have `SYN' errors
27 rerror_rate % of connections that have `REJ' errors
28 srv_rerror_rate % of connections that have `REJ' errors
29 same_srv_rate % of connections to the same service
30 di�_srv_rate % of connections to di�erent services
31 srv_di�_host_rate % of connections to di�erent hosts
32 dst_host_count count of connections having same dst host
33 dst_host_srv_count count of connections having same dst host and

using same service
34 dst_host_same_srv_rate % of connections having same dst port and

using same service
35 dst_host_di�_srv_rate % of di�erent services on current host
36 dst_host_-

same_src_port_rate % of connections to current host having same src port
37 dst_host_-

srv_di�_host_rate % of connections to same service coming from di�. hosts
38 dst_host_serror_rate % of connections to current host that have an S0 error
39 dst_host_srv_serror_rate % of connections to current host and speci�ed service

that have an S0 error
40 dst_host_rerror_rate % of connections to current host that have an RST error
41 dst_host_srv_rerror_rate % of connections to the current host and speci�ed service

that have an RST error

A.5. LSTM Neural Network 183

Table A.2: Tra�c types and their occurrences in all labelled KDD Cup '99
datasets.

training test
tra�c label type/class full 10% 10422 10%
apache2 dos 0 0 0 794
back dos 2203 2203 1000 1098
bu�er_over�ow u2r 30 30 30 22
ftp_write r2l 8 8 8 3
guess_passwd r2l 53 53 53 4367
httptunnel r2l(u2r)* 0 0 0 158
imap r2l 12 12 12 1
ipsweep probe 12481 1247 1000 306
land dos 21 21 21 9
loadmodule u2r 9 9 9 2
mailbomb dos 0 0 0 5000
mscan probe 0 0 0 1053
multihop r2l(u2r)* 7 7 7 18
named r2l 0 0 0 17
neptune dos 1072017 107201 1000 58001
nmap probe 2316 231 1000 84
normal normal 972781 97278 1000 60593
perl u2r 3 3 3 2
phf r2l 4 4 4 2
pod dos 264 264 264 87
portsweep probe 10413 1040 1000 354
processtable dos 0 0 0 759
ps u2r 0 0 0 16
rootkit u2r 10 10 10 13
saint probe 0 0 0 736
satan probe 15892 1589 1000 1633
sendmail r2l 0 0 0 17
smurf dos 2807886 280790 1000 164091
snmpgetattack r2l 0 0 0 7741
snmpguess r2l 0 0 0 2406
spy r2l 2 2 2 0
sqlattack u2r 0 0 0 2
teardrop dos 979 979 979 12
udpstorm dos 0 0 0 2
warezclient r2l 1020 1020 1000 0
warezmaster r2l(dos)* 20 20 20 1602
worm r2l 0 0 0 2
xlock r2l 0 0 0 9
xsnoop r2l 0 0 0 4
xterm u2r 0 0 0 13∑

4898431 494021 10422 311029∑
normal 972781 97278 1000 60593
dos 3883370 391458 4264 229853
probe 41102 4107 4000 4166
r2l 1126 1126 1106 16347
u2r 52 52 52 70

* = multiple categorisation possible

184 Appendix A. Tables and Figures

normal dos probe r2l u2r

Figure A.1: Distribution histograms of all features in the original KDD Cup '99
`10%' training data. The x-axis shows the value of the feature and the y-axis shows
how often the value exists in the training data. The highlighted features `num_-
outbound_cmds' and `is_host_login' show no variance. The highlighted features
`duration', `src_bytes' and `dst_bytes' have strongly biased distributions with some
huge outliers.

A.5. LSTM Neural Network 185

normal dos probe r2l u2r

Figure A.2: Distributions histograms of all features in the preprocessed KDD Cup
'99 `10%' training data. The x-axis shows the value of the feature and the y-axis
shows how often the value exists in the training data. The highlighted features
strongly correlate with the `dos' attack class.

186 Appendix A. Tables and Figures

normal dos probe r2l u2r

Figure A.3: Distributions of all features in the custom dataset with 10,422 training
instances extracted from the `10%' training dataset. The x-axis shows the value of
the feature and the y-axis shows how often the value exists in the training data.
A selection of interesting features with visible correlations to the attack classes are
highlighted.

A.5. LSTM Neural Network 187
d
s
t_
h
o
s
t_
re
rro
r...

d
s
t_
h
o
s
t_
s
a
m
e
...

d
s
t_
h
o
s
t_
d
iff...

d
s
t_
h
o
s
t_
s
rv...

s
e
rro
r_
ra
te

w
ro
n
g
_
fra
g
m
e
n
t

d
s
t_
b
y
te
s

s
rc
_
b
y
te
s

s
e
rv
ic
e

p
ro
to
c
o
l_
ty
p
e
0

d
u
ra
tio
n

normal dos probe r2l u2r

Figure A.4: This shows the scatter plot matrix of the 11 features in the custom
training set with 10,422 instances. The features in the order from left to right
and from bottom to top are `duration', `protocol_type', `service', `source_bytes',
`dst_bytes', `wrong_fragment', `serror_rate', `dst_host_srv_count', `dst_host_-
di�_srv_rate', `dst_host_same_src_port_rate' and `dst_host_rerror_rate'. The
group of relevant scatter plots are framed with a black line starting from the upper
left corner. Interesting is the clustering of data points along a line in the scatter
plots of the �ve higher level features. The areas are highlighted with a circle. The
clustering indicates strong correlations for `dos' and `probe' attacks between these
features.

188 Appendix A. Tables and Figures

d
s
t_
h
o
s
t_
re
rro
r...

d
s
t_
h
o
s
t_
s
rv...

d
s
t_
h
o
s
t_
s
a
m
e
...

d
s
t_
h
o
s
t_
d
iff...

d
s
t_
h
o
s
t_
s
a
m
e
...

d
s
t_
h
o
s
t_
s
rv...

d
s
t_
h
o
s
t_
c
o
u
n
t

s
a
m
e
_
s
rv
_
ra
te

lo
g
g
e
d
_
in

d
s
t_
b
y
te
s

s
rc
_
b
y
te
s

fla
g

s
e
rv
ic
e

p
ro
to
c
o
l_
ty
p
e
0

normal probe

Figure A.5: The scatter plot matrix of the `14' important features related to
network probes in the custom training set with 10,422 instances. The features
in the order from left to right and from bottom to top are `protocol_type',
`service', `�ag', `src_bytes, dst_bytes', `logged_in', `same_srv_rate', `dst_-
host_count', `dst_host_srv_count', `dst_host_same_srv_rate', `dst_host_di�_-
srv_rate', `dst_host_same_src_port_rate', `dst_host_srv_di�_host_rate' and
`dst_host_rerror_rate'. The scatter plots between some of the higher layer features
shown in the matrix have strong correlations. The interesting areas are highlighted
with circle.

A.5. LSTM Neural Network 189
d
s
t_
h
o
s
t_
re
rro
r...

d
s
t_
h
o
s
t_
s
rv...

d
s
t_
h
o
s
t_
s
e
rro
r...

d
s
t_
h
o
s
t_
s
a
m
e
...

s
a
m
e
_
s
rv
_
ra
te

c
o
u
n
t

w
ro
n
g
_
fra
g
m
e
n
t

d
s
t_
b
y
te
s

s
rc
_
b
y
te
s

fla
g

s
e
rv
ic
e

normal dos

Figure A.6: Scatter plot matrix of the `11' important features related to
`dos' attacks in the custom training set with 10,422 instances. The features
in the order from left to right and from bottom to top are `service', `�ag',
`src_bytes', `dst_bytes', `wrong_fragment', `count', `same_srv_rate', `dst_host_-
same_src_port_rate', `dst_host_serror_rate', `dst_host_srv_serror_rate' and
`dst_host_rerror_rate'. The scatter plots between some of the higher layer features
highlighted in the matrix show strong correlations.

190 Appendix A. Tables and Figures

d
s
t_
h
o
s
t_
s
rv...

d
s
t_
h
o
s
t_
s
rv...

d
s
t_
h
o
s
t_
s
e
rro
r...

d
s
t_
h
o
s
t_
s
rv...

d
s
t_
h
o
s
t_
s
a
m
e
...

d
s
t_
h
o
s
t_
d
iff...

d
s
t_
h
o
s
t_
s
rv...

d
s
t_
h
o
s
t_
c
o
u
n
t

s
rv
_
c
o
u
n
t

h
o
t

d
s
t_
b
y
te
s

s
rv
_
b
y
te
s

s
e
rv
ic
e

d
u
ra
tio
n

normal r2l

Figure A.7: Scatter plot matrix of the `14' important features related to `r2l'
attacks in the custom training set with 10,422 instances. The features in the order
from left to right and from bottom to top are `duration', `service', `src_bytes', `dst_-
bytes', `hot', `srv_count', `dst_host_count', `dst_host_srv_count', `dst_host_-
di�_srv_rate', `dst_host_same_src_port_rate', `dst_host_srv_di�_host_rate',
`dst_host_serror_rate', `dst_host_srv_serror_rate' and `dst_host_srv_rerror_-
rate'. A number of feature pairs highlighted in the matrix show weak correlations.

A.5. LSTM Neural Network 191

d
s
t_
h
o
s
t_
s
rv...

d
s
t_
h
o
s
t_
c
o
u
n
t

n
u
m
_
file
_
c
re
a
...

ro
o
t_
s
h
e
ll

h
o
t

d
s
t_
b
y
te
s

s
rc
_
b
y
y
te
s

s
e
rv
ic
e

normal u2r

Figure A.8: Scatter plot matrix of the `8' important features related to `u2r'
attacks in the custom training set with 10,422 instances. The features in the order
from left to right and from bottom to top are `service', `srv_bytes', `dst_bytes',
`hot', `root_shell', `num_�le_creations', `dst_host_count' and `dst_host_srv_-
count'. There are no salient correlations. The correlations in the highlighted areas
are either related to the normal tra�c class or are not very strong.

192 Appendix A. Tables and Figures

peephole
connections

input layer
is fully connected
to output layer
(shortcuts)

error carousel

input gate

output gate

forget gate

output layer

input layer

all cell outputs
are connected
to cell inputs

input layer
is fully connected
to hidden layer

cell w
eights

F
ig
u
r
e
A
.9
:
L
S
T
M

n
eu
ral

n
etw

ork
w
ith

tw
o
m
em

ory
b
lo
ck
s
con

tain
in
g
tw
o
cells

each
.
T
h
e
in
p
u
t
layer

is
fu
lly

con
n
ected

to
th
e
h
id
d
en

an
d
ou
tp
u
t
layers.

T
h
is
n
etw

ork
h
as

p
eep

h
o
le
co
n
n
ectio

n
s
an
d
sh
o
rtcu

ts.
F
or

reason
s
of

clarity,
n
ot

all
con

n
ection

s
are

sh
ow

n
.

Bibliography

[Abraham & Grosan 2006] A. Abraham and C. Grosan. Evolving intrusion
detection systems. In Genetic Systems Programming, volume 13 of
Studies in Computational Intelligence, pages 57�79. Springer Berlin /
Heidelberg, 2006. p. 28, 123

[Agarwal & Joshi 2000] R. Agarwal and M.V. Joshi. PNrule: A new
framework for learning classier models in data mining. technical report
00-015, Department of Computer Science, University of Minnesota,
2000. p. 27, 120, 121

[Amaldi & Kann 1998] E. Amaldi and V. Kann. On the approximability of
minimizing nonzero variables or unsatis�ed relations in linear systems.
Theoretical Computer Science, vol. 209, no. 1-2, pages 237�260, 1998.
p. 78

[Anderson et al. 1995] D. Anderson, T. Frivold and A. Valdes. Next-
generation intrusion detection expert system (NIDES): A summary.
technical report, SRI International, 1995. p. 22

[Anderson 1980] J.P. Anderson. Computer security threat monitoring and
surveillance. technical report, James P. Anderson Company, Fort
Washington, Pennsylvania, 1980. p. 14, 19

[Anley 2002] C. Anley. Advanced SQL injection in SQL server applications.
technical report, Next Generation Security Software Ltd, 2002. p. 16

[Axelsson 2000a] S. Axelsson. The base-rate fallacy and the di�culty of
intrusion detection. ACM Transactions on Information and System
Security (TISSEC), vol. 3, no. 3, pages 186�205, 2000. p. 2

[Axelsson 2000b] S. Axelsson. Intrusion detection systems: A survey and
taxonomy. technical report, Department of Computer Engineering,
Chalmers University of Technology, 2000. p. 4, 13, 14

[Bace & Mell 2001] R. Bace and P. Mell. NIST special publication on
intrusion detection systems. technical report, DTIC Document, 2001.
p. 18, 22, 23, 25

[Bejtlich 2004] R. Bejtlich. The tao of network security monitoring: Beyond
intrusion detection. Addison-Wesley Professional, 2004. p. 1, 14, 15,
23

194 Bibliography

[Bejtlich 2006] R. Bejtlich. Extrusion detection: Security monitoring for
internal intrusions. Addison-Wesley Professional, 2006. p. 14, 22

[Bishop 2004] M. Bishop. Introduction to computer security. Addison-Wesley
Professional, 2004. p. 19

[Bivens et al. 2002] A. Bivens, C. Palagiri, R. Smith, B. Szymanski and
M. Embrechts. Network-based intrusion detection using neural
networks. In Proceedings of the Arti�cial Neural Networks in
Engineering Conference (ANNIE), volume 12, pages 579�584. Citeseer,
2002. p. 29, 124

[Boser et al. 1992] B.E. Boser, I.M. Guyon and V.N. Vapnik. A training
algorithm for optimal margin classi�ers. In Proceedings of the �fth
annual workshop on Computational learning theory, COLT '92, pages
144�152. ACM, 1992. p. 3, 33, 48, 75

[Bro 2011] Bro. BroIDS. World Wide Web electronic publication, 2011.
http://www.bro-ids.org/. p. 14, 23, 24

[Brugger & Chow 2005] S.T. Brugger and J. Chow. An assessment of the
DARPA IDS evaluation dataset using snort. technical report CSE-
2007-1, Department of Computer Science, University of California,
Davis (UCDAVIS), 2005. p. 27, 119

[Cannady 1998] J. Cannady. Arti�cial neural networks for misuse detection.
In Proceedings of the 1998 National Information Systems Security
Conference (NISSC), pages 443�456. Citeseer, 1998. p. 28, 124

[Chavan et al. 2004] S. Chavan, K. Shah, N. Dave, S. Mukherjee, A. Abraham
and S. Sanyal. Adaptive neuro-fuzzy intrusion detection systems.
In Proceedings of the International Conference on Information
Technology: Coding and Computing (ITCC), volume 1, pages 70�74.
IEEE Computer Society, 2004. p. 26, 28, 95, 96, 123

[Chebrolu et al. 2005] S. Chebrolu, A. Abraham and J.P. Thomas. Feature
deduction and ensemble design of intrusion detection systems.
Computers & Security, vol. 24, no. 4, pages 295�307, 2005. p. 26,
95, 96, 128

[Chen et al. 2005] Y. Chen, A. Abraham and J. Yang. Feature selection and
intrusion detection using hybrid �exible neural tree. In Advances in
Neural Networks (ISNN), volume 3498 of Lecture Notes in Computer
Science, pages 439�444. Springer Berlin / Heidelberg, 2005. p. 26, 27,
95, 96

Bibliography 195

[Chen et al. 2006] Y. Chen, Y. Li, X. Cheng and L. Guo. Survey and
taxonomy of feature selection algorithms in intrusion detection system.
In Information Security and Cryptology, volume 4318 of Lecture Notes
in Computer Science, pages 153�167. Springer Berlin / Heidelberg,
2006. p. 78

[Cheswick et al. 2003] W.R. Cheswick, S.M. Bellovin and A.D. Rubin.
Firewalls and internet security: Repelling the wily hacker. Addison-
Wesley Professional, second edition, 2003. p. 14

[Cortes & Vapnik 1995] C. Cortes and V. Vapnik. Support-vector networks.
Machine Learning, vol. 20, no. 3, pages 273�297, 1995. p. 3, 33, 48, 76

[Cowan et al. 2000] C. Cowan, F. Wagle, C. Pu, S. Beattie and J. Walpole.
Bu�er over�ows: attacks and defenses for the vulnerability of the
decade. In Proc. DARPA Information Survivability Conf. and
Exposition DISCEX'00, volume 2, pages 119�129. IEEE Computer
Society, 2000. p. 18

[CVE 2012] CVE. CVE - Common Vulnerabilities and Exposures. World
Wide Web electronic publication, 2012. https://cve.mitre.org/. p. 18

[DARPA 2011] DARPA. DARPA Intrusion Detection Evaluation. World
Wide Web electronic publication, 2011. http://www.ll.mit.edu/-
mission/communications/ist/corpora/ideval/data/index.html. p. 3,
19, 90

[Dash & Liu 1997] M. Dash and H. Liu. Feature selection for classi�cation.
Intelligent Data Analysis, vol. 1, no. 1-4, pages 131�156, 1997. p. 78,
87, 88

[Debar et al. 1992] H. Debar, M. Becker and D. Siboni. A neural network
component for an intrusion detection system. In Proceedings of the
IEEE Computer Society Symposium on Research in Security and
Privacy, pages 240�250. IEEE Computer Society, 1992. p. 28, 124

[Debar et al. 1999] H. Debar, M. Dacier and A. Wespi. Towards a taxonomy
of intrusion-detection systems. Computer Networks, vol. 31, no. 8,
pages 805�822, 1999. p. 4, 14

[Debar et al. 2000] H. Debar, M. Dacier and A. Wespi. A revised taxonomy for
intrusion-detection systems. Annals of Telecommunications, vol. 55,
no. 7, pages 361�378, 2000. p. 4, 14

196 Bibliography

[Denning 1987] D.E. Denning. An Intrusion-Detection Model. Software
Engineering, IEEE Transactions on, no. 2, pages 222�232, 1987. p. 14,
19

[Dreger et al. 2006] H. Dreger, A. Feldmann, M. Mai, V. Paxson and
R. Sommer. Dynamic application-layer protocol analysis for network
intrusion detection. In USENIX Security Symposium, 2006. p. 24

[Elkan 2000] C. Elkan. Results of the KDD'99 classi�er learning. SIGKDD
Explorations Newsletter, vol. 1, pages 63�64, 2000. p. 26, 119, 125

[Elman 1990] J.L. Elman. Finding structure in time. cognitive science, vol. 14,
pages 179�211, 1990. p. 53

[Eskin et al. 2002] E. Eskin, A. Arnold, M. Prerau, L. Portnoy and S. Stolfo.
Applications of data mining in computer security, chapter A geometric
framework for unsupervised anomaly detection, pages 77�101. Kluwer
Academic Pub, 2002. p. 29, 124

[Falliere et al. 2010] N. Falliere, L. O Murchu and E. Chien. W32.Stuxnet
dossier V1.3. technical report, Symantec Security Response, 11 2010.
p. 1

[Fawcett 2006] T. Fawcett. An introduction to ROC analysis. Pattern
Recognition Letters, vol. 27, no. 8, pages 861�874, 2006. p. 84

[Garcia-Teodoro et al. 2009] P. Garcia-Teodoro, J. Diaz-Verdejo and
E. Macia-Fernandez G. andVazquez. Anomaly-based network
intrusion detection: Techniques, systems and challenges. Computers
& Security, vol. 28, no. 1-2, pages 18�28, 2009. p. 2, 4, 25

[Gates & Taylor 2006] C. Gates and C. Taylor. Challenging the anomaly
detection paradigm: a provocative discussion. In Proceedings of the
2006 workshop on New security paradigms, pages 21�29. ACM, 2006.
p. 25

[Gers et al. 1999] F.A. Gers, J. Schmidhuber and F. Cummins. Learning to
forget: Continual prediction with LSTM. technical report IDSIA-01-99,
IDSIA, Lugano, Lugano, CH, 1999. p. 3, 33, 63, 68, 72, 76

[Gers et al. 2002] F.A. Gers, N. Schraudolph and J. Schmidhuber. Learning
precise timing with LSTM recurrent networks. Journal of Machine
Learning Research, vol. 3, pages 115�143, 2002. p. 3, 33, 63, 74, 76

Bibliography 197

[Han & Kamber 2006] J. Han and M. Kamber. Data mining: Concepts and
techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, second edition, 2006. p. 2, 23, 33, 37, 40, 48, 75, 80

[Hay et al. 2008] A. Hay, D. Cid and R. Bray. Ossec host-based intrusion
detection guide. Syngress, 2008. p. 14, 22

[Heckerman et al. 1995] D. Heckerman, D. Geiger and D.M. Chickering.
Learning bayesian networks: The combination of knowledge and
statisticaldata. In Machine Learning, pages 20�197. Kluwer Academic
Publishers, 1995. p. 3, 33, 40, 75

[Hettich & Bay 1999] S. Hettich and S.D. Bay. KDD Cup 1999 Data, The
UCI KDD Archive, Information and Computer Science, University of
California, Irvine. World Wide Web electronic publication, October
1999. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
p. 3, 93

[Hochreiter & Schmidhuber 1996] S. Hochreiter and J. Schmidhuber. Long
Short-Term Memory. technical report FKI-207-95, Technische
Universität Muenchen, 1996. Version 3.0. p. 3, 33, 63, 76

[Hochreiter & Schmidhuber 1997] S. Hochreiter and J. Schmidhuber. Long
Short-Term Memory. Neural Computation, vol. 9, no. 8, pages 1735�
1780, 1997. p. 3, 33, 63, 76

[Hochreiter et al. 2001] S. Hochreiter, Y. Bengio, P. Frasconi and J. Schmid-
huber. Gradient �ow in recurrent nets: the di�culty of learning long-
term dependencies. In A Field Guide to Dynamical Recurrent Neural
Networks. IEEE Press, 2001. p. 33, 63, 76

[Hu & Hu 2005] W. Hu and W. Hu. Network-based intrusion detection using
Adaboost algorithm. In Proceedings of the 2005 IEEE/WIC/ACM
International Conference on Web Intelligence, WI '05, pages 712�717.
IEEE Computer Society, 2005. p. 28, 122

[Jagannathan et al. 1993] R. Jagannathan, T. Lunt, D. Anderson, C. Dodd,
F. Gilham, C. Jalali, H. Javitz, P. Neumann, A. Tamaru and A. Valdes.
System design document: Next-generation intrusion detection expert
system (NIDES). technical report, SRI International, 1993. p. 14

[John & Langley 1995] G. John and P. Langley. Estimating continuous
distributions in Bayesian classi�ers. In Proceedings of the Eleventh
Conference on Uncertainty in Arti�cial Intelligence, pages 338�345.
Morgan Kaufmann, 1995. p. 3, 33, 38, 75

198 Bibliography

[Jordan 1986] M.I. Jordan. Attractor dynamics and parallelism in a
connectionist sequentialmachine. In Proceedings of the Eigth Annual
Conference of the Cognitive Science Society, pages 531�546, 1986. p. 53

[Kayacik et al. 2005] H.G. Kayacik, A.N. Zincir-Heywood and M.I. Heywood.
Selecting features for intrusion detection: A feature relevance
analysison KDD 99 intrusion detection datasets. In Proceedings of
the Third Annual Conference on Privacy, Security and Trust (PST),
2005. p. 26, 27, 95, 96

[Kayacik et al. 2007] H.G. Kayacik, A.N. Zincir-Heywood and M.I. Heywood.
A hierarchical SOM-based intrusion detection system. Engineering
Applications of Arti�cial Intelligence, vol. 20, no. 4, pages 439�451,
2007. p. 28, 123

[Keerthi et al. 2001] S.S. Keerthi, S.K. Shevade, C. Bhattacharyya and
K.R.K. Murthy. Improvements to Platt's SMO algorithm for SVM
classi�er design. Neural Computation, vol. 13, no. 3, pages 637�649,
2001. p. 48

[Kemmerer & Vigna 2002] R.A. Kemmerer and G. Vigna. Intrusion
detection: a brief history and overview. IEEE Computer, vol. 35, no. 4,
pages 27�30, 2002. p. 14

[Kim & Karp 2004] H. Kim and B. Karp. Autograph: Toward Automated,
Distributed Worm Signature Detection. In USENIX Security
Symposium, pages 271�286. USENIX, 2004. p. 23

[Kim & Spa�ord 1994] G.H. Kim and E.H. Spa�ord. The design and
implementation of tripwire: A �le system integrity checker. In
Proceedings of the 2nd ACM Conference on Computer and
CommunicationsSecurity, pages 18�29. ACM, 1994. p. 14, 22

[Kohavi & John 1997] R. Kohavi and G.H. John. Wrappers for feature subset
selection. Arti�cial Intelligence, vol. 97, no. 1-2, pages 273�324, 1997.
p. 78

[Kruegel et al. 2003] C. Kruegel, D. Mutz, W. Robertson and F. Valeur.
Bayesian event classi�cation for intrusion detection. In Pro-
ceedings of the 19th Annual Computer Security Applications
Conference(ACSAC), pages 14�23, 2003. p. 29, 124

[Kumar 1995] S. Kumar. Classi�cation and detection of computer intrusions.
PhD thesis, Purdue University, 1995. p. 1, 23

Bibliography 199

[Lakhina et al. 2005] A. Lakhina, M. Crovella and C. Diot. Mining anomalies
using tra�c feature distributions. In Proceedings of the 2005
conference on Applications, technologies, architectures, and protocols
for computer communications, pages 217�228. ACM, 2005. p. 25

[Laskov et al. 2005] P. Laskov, P. Dussel, C. Schafer and K. Rieck. Learning
intrusion detection: Supervised or unsupervised? In Image Analysis
and Processing (ICIAP), volume 3617 of Lecture Notes in Computer
Science, pages 50�57. Springer Berlin / Heidelberg, 2005. p. 29, 124

[Lee & Stolfo 2000] W. Lee and S.J. Stolfo. A framework for constructing
features and models for intrusion detectionsystems. Transactions on
Information and System Security (TISSEC), vol. 3, no. 4, pages 227�
261, 2000. p. 2, 3, 26, 93, 97

[Lee et al. 2002] W. Lee, W. Fan, W.M. Miller, S.J. Stolfo and E. Zadok.
Toward cost-sensitive modeling for intrusion detection and response.
Journal of Computer Security, vol. 10, no. 1/2, pages 5�22, 2002. p. 2,
3

[Lee et al. 2006] C.H. Lee, S.W. Shin and J.W. Chung. Network intrusion
detection through genetic feature selection. In Seventh ACIS Inter-
national Conference on Software Engineering, Arti�cial Intelligence,
Networking, and Parallel/Distributed Computing (SNPD), pages 109�
114. IEEE Computer Society, 2006. p. 26, 27, 95, 96

[Lee 1999] W. Lee. A data mining framework for constructing features and
models for intrusion detection systems. PhD thesis, USA: Columbia
University, 1999. p. 26, 93, 97

[Levin 2000] I. Levin. KDD-99 classi�er learning contest LLSoft's results
overview. SIGKDD Explorations Newsletter, vol. 1, pages 67�75, 2000.
p. 27, 119, 120

[Liao & Vemuri 2006] Y Liao and V.R. Vemuri. Enhancing computer
security with smart technology, chapter Machine learning in intrusion
detection, pages 93�124. Auerbach Publications, 2006. p. 2

[Lippmann et al. 2000a] R. Lippmann, J.W. Haines, D.J. Fried, J. Korba and
K. Das. The 1999 DARPA o�-line intrusion detection evaluation.
Computer Networks, vol. 34, no. 4, pages 579�595, 2000. p. 19, 25, 90

[Lippmann et al. 2000b] R.P. Lippmann, D.J. Fried, I. Graf, J.W. Haines,
K.R. Kendall, D. McClung, D. Weber, S.E. Webster, D. Wyschogrod,
R.K. Cunninghamet al. Evaluating intrusion detection systems: The

200 Bibliography

1998 DARPA o�-line intrusion detection evaluation. In DARPA In-
formation Survivability Conference and Exposition, 2000.DISCEX'00.
Proceedings, volume 2, pages 12�26. IEEE, 2000. p. 19, 25, 90

[Lunt et al. 1992] T.F. Lunt, A. Tamaru, F. Gilham, R. Jagannathan,
C. Jalali, H.S. Javitz, A. Valdes, P.G. Neumann and T.D. Garvey. A
real-time intrusion-detection expert system (IDES). technical report,
SRI International, 1992. p. 22

[Lunt 1988] Teresa F. Lunt. Automated Audit Trail Analysis and Intrusion
Detection: A Survey. In Proceedings of the 11th National Computer
Security Conference, pages 65�73, 1988. p. 1, 14

[Lunt 1993] T.F. Lunt. A survey of intrusion detection techniques. Computers
& Security, vol. 12, no. 4, pages 405�418, 1993. p. 1, 14

[Lyon 2009] Gordon Fyodor Lyon. Nmap network scanning: The o�cial nmap
project guide to network discovery and security scanning. Insecure,
USA, 2009. p. 15, 20

[Mahoney & Chan 2003] M.V. Mahoney and P.K. Chan. An analysis of the
1999 DARPA/Lincoln Laboratory evaluation data for network anomaly
detection. In Recent Advances in Intrusion Detection, volume 2820 of
Lecture Notes in Computer Science, pages 220�237. Springer Berlin /
Heidelberg, 2003. p. 27, 118

[Maloof 2006] M.A. Maloof. Some basic concepts of machine learning and
data mining. In Machine Learning and Data Mining for Computer
Security, Advanced Information and Knowledge Processing, pages 23�
43. Springer London, 2006. p. 80

[Maynor & Mookhey 2007] D. Maynor and K.K. Mookhey. Metasploit
toolkit for penetration testing, exploit development, and vulnerability
research. Syngress Media Inc, 2007. p. 16, 21

[McHugh 2000] J. McHugh. Testing intrusion detection systems: A critique of
the 1998 and 1999 DARPA intrusion detection system evaluations as
performed by Lincoln Laboratory. ACM Transactions on Information
and System Security, vol. 3, no. 4, pages 262�294, 2000. p. 27, 118

[McHugh 2001] J. McHugh. Intrusion and intrusion detection. International
Journal of Information Security, vol. 1, no. 1, pages 14�35, 2001. p. 1,
14

[Metasploit 2011] Metasploit. Metasploit. World Wide Web electronic
publication, 2011. http://www.metasploit.com/. p. 16, 21

Bibliography 201

[Metz et al. 2009] C.E. Metz, Y. Jiang, H. MacMahon, R.M. Nishikawa and
X. Ran. ROC software. World Wide Web electronic publication, March
2009. http://www-radiology.uchicago.edu/krl/. p. 157

[Minsky & Papert 1969] M. Minsky and S. Papert. Perceptrons. MIT Press,
Cambridge, 1969. p. 42

[Mirkovic et al. 2005] J. Mirkovic, S. Dietrich and P. Reiher. Internet denial
of service: attack and defense mechanisms. Prentice Hall, 2005. p. 20

[Mitchell 1997] T. Mitchell. Machine learning. McGraw Hill, 1997. p. 2, 33,
34, 37, 40, 75

[Moore et al. 2003] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford
and N. Weaver. Inside the slammer worm. Security & Privacy, IEEE,
vol. 1, no. 4, pages 33�39, 2003. p. 20

[Mukherjee et al. 1994] B. Mukherjee, L.T. Heberlein and K.N. Levitt.
Network intrusion detection. Network, IEEE, vol. 8, no. 3, pages 26�41,
1994. p. 1, 14, 23

[Mukkamala et al. 2003] S. Mukkamala, A.H. Sung and A. Abraham.
Intelligent systems design and applications, chapter Intrusion
Detection Using Ensemble of Soft Computing Paradigms, pages 239�
248. Springer New York, 2003. p. 28, 123

[Mukkamala et al. 2004] S. Mukkamala, A.H. Sung and A. Abraham.
Modeling intrusion detection systems using linear genetic programming
approach. In Innovations in Applied Arti�cial Intelligence, volume 3029
of Lecture Notes in Computer Science, pages 633�642. Springer Berlin
/ Heidelberg, 2004. p. 28, 123

[Nessus 2011] Nessus. Nessus. World Wide Web electronic publication, 2011.
http://nessus.org/. p. 15

[nmap 2011] nmap. nmap. World Wide Web electronic publication, 2011.
http://http://nmap.org/. p. 15, 20

[Northcutt & Novak 2003] S. Northcutt and J. Novak. Network intrusion
detection. New Riders Publishing Thousand Oaks, third edition, 2003.
p. 14

[Northcutt et al. 2005] S. Northcutt, L. Zeltser, S. Winters, K. Kent and
R.W. Ritchey. Inside network perimeter security. Sams Indianapolis,
IN, USA, second edition, 2005. p. 14

202 Bibliography

[OpenVAS 2011] OpenVAS. OpenVAS. World Wide Web electronic
publication, 2011. http://www.openvas.org/. p. 15, 20

[OSSEC 2011] OSSEC. OSSEC. World Wide Web electronic publication,
2011. http://www.ossec.net/. p. 14, 22

[Ourston et al. 2003] D. Ourston, S. Matzner, W. Stump and B. Hopkins.
Applications of hidden markov models to detecting multi-stage network
attacks. In Proceedings of the 36th Annual Hawaii International
Conference on System Sciences (HICSS), pages 10�15, 2003. p. 28,
124

[Paxson 1999] V. Paxson. Bro: A system for detecting network intruders in
real-time. Computer Networks, vol. 31, no. 23, pages 2435�2463, 1999.
p. 2, 14, 23, 24, 93

[Peddabachigari et al. 2007] S. Peddabachigari, A. Abraham, C. Grosan
and J. Thomas. Modeling intrusion detection system using hybrid
intelligent systems. Journal of network and computer applications,
vol. 30, no. 1, pages 114�132, 2007. p. 28, 123

[Pesce & Metz 2007] L.L. Pesce and C.E. Metz. Reliable and computationally
e�cient maximum-likelihood estimation of �proper� binormal ROC
curves. Academic radiology, vol. 14, no. 7, pages 814�829, 2007. p. 157

[Pfahringer 2000] B. Pfahringer. Winning the KDD99 classi�cation cup:
Bagged boosting. SIGKDD Explorations Newsletter, vol. 1, pages 65�
66, 2000. p. 27, 119, 120

[Platt 1999] J.C. Platt. Fast training of support vector machines using
sequential minimal optimization. MIT Press, Cambridge, MA, USA,
1999. p. 48

[Porras & Neumann 1997] P.A. Porras and P.G. Neumann. EMERALD:
Event monitoring enabling responses to anomalous live disturbances.
In Proceedings of the 20th National Information Systems Security
Conference, pages 353�365. Citeseer, 1997. p. 14

[Prelude 2011] Prelude. PreludeIDS. World Wide Web electronic publication,
2011. http://prelude-ids.org/. p. 2, 14, 30

[Provost et al. 1998] F. Provost, T. Fawcett and R. Kohavi. The case
against accuracy estimation for comparing induction algorithms. In
Proceedings of the Fifteenth International Conference on Machine
Learning, pages 445�453, San Francisco, CA, 1998. Morgan Kaufmann.
p. 86

Bibliography 203

[Quinlan 1986] J.R. Quinlan. Induction of decision trees. Machine Learning,
vol. 1, no. 1, pages 81�106, 1986. p. 3, 33, 34, 75

[Quinlan 1993] J.R. Quinlan. C4.5: programs for machine learning. Morgan
Kaufmann Publishers Inc., 1993. p. 3, 33, 34, 75, 125, 207

[Riancho 2011] A. Riancho. w3af - Web Application Attack and
Audit Framework. World Wide Web electronic publication,
2011. http://www.ll.mit.edu/mission/communications/ist/corpora/-
ideval/data/index.html. p. 21

[Roesch 1999] M. Roesch. Snort�lightweight intrusion detection for networks.
In Proceedings of the 13th USENIX conference on System adminis-
tration, pages 229�238, Seattle, Washington, 1999. p. 14, 23, 24, 25,
119

[Rumelhart et al. 1986] D.E. Rumelhart, G.E. Hinton and Williams R.J.
Learning internal representations by error propagation. In J.L.
McClelland and D.E. Rumelhart, editeurs, Parallel distributed
processing: explorations in the microstructure of cognition, volume 1,
pages 318�362. MIT Press, 1986. p. 33, 59, 76

[Rumelhart et al. 1994] D.E. Rumelhart, B. Widrow and M. Lehr. The basic
ideas in neural networks. Communications of the ACM, vol. 37, no. 3,
pages 87�92, 1994. p. 3, 33, 40, 75

[Sabhnani & Serpen 2003] M. Sabhnani and G. Serpen. Application of
machine learning algorithms to KDD intrusion detection dataset within
misuse detection context. In International Conference on Machine
Learning, Models, Technologies and Applications (MLMTA), pages
209�215. CSREA Press, 2003. p. 27, 121, 122

[Sabhnani & Serpen 2004] M. Sabhnani and G. Serpen. Why machine
learning algorithms fail in misuse detection on KDD intrusion
detection data set. Intelligent Data Analysis, vol. 8, no. 4, pages 403�
415, 2004. p. 27, 118

[Samhain 2011] Samhain. Samhain. World Wide Web electronic publication,
2011. http://www.la-samhna.de/. p. 14, 22

[Scarfone & Mell 2007] K. Scarfone and P. Mell. Guide to intrusion detection
and prevention systems (IDPS). technical report 2007, National
Institute of Standards and Technology (NIST), 2007. p. 1, 4, 21, 22,
23, 24, 25, 29

204 Bibliography

[Schuba & Spa�ord 1994] C.L. Schuba and E.H. Spa�ord. Countering abuse
of name-based authentication. technical report, Purdue University,
1994. p. 17

[Shields 2006] C. Shields. An Introduction to Information Assurance. In
Machine Learning and Data Mining for Computer Security, Advanced
Information and Knowledge Processing, pages 7�21. Springer London,
2006. p. 14

[Sinclair et al. 1999] C. Sinclair, L. Pierce and S. Matzner. An application of
machine learning to network intrusion detection. In Proceedings of the
15th Annual Computer Security Applications Conference (ACSAC),
pages 371�377. IEEE Computer Society, 1999. p. 28, 123

[Smaha 1988] S.E. Smaha. Haystack: An intrusion detection system. In
Aerospace Computer Security Applications Conference, 1988., Fourth,
pages 37�44. IEEE, 1988. p. 14, 19, 22

[Snapp et al. 1991] S.R. Snapp, J. Brentano, G.V. Dias, T.L. Goan, L.T.
Heberlein, C.L. Ho, K.N. Levitt, B. Mukherjee, S.E. Smaha,
T. Granceet al. DIDS (distributed intrusion detection system)-
motivation, architecture, and an early prototype. In Proceedings of the
14th National Computer Security Conference. Citeseer, 1991. p. 22

[Snort 2011] Snort. Snort. World Wide Web electronic publication, 2011.
http://www.snort.org/. p. 14, 23, 24, 25

[Song et al. 2005] D. Song, M.I. Heywood and A.N. Zincir-Heywood. Training
genetic programming on half a million patterns: An example from
anomaly detection. IEEE Transactions on Evolutionary Computation,
vol. 9, no. 3, pages 225�239, 2005. p. 28, 122

[Song et al. 2007] Y. Song, M.E. Locasto, A. Stavrou, A.D. Keromytis and
S.J. Stolfo. On the infeasibility of modeling polymorphic shellcode.
In Proceedings of the 14th ACM conference on Computer and
communications security, pages 541�551. ACM, 2007. p. 23

[Spinellis 2003] D. Spinellis. Reliable identi�cation of bounded-length viruses
is NP-complete. Information Theory, IEEE Transactions on, vol. 49,
no. 1, pages 280�284, 2003. p. 24

[Stallings 2006] W. Stallings. Cryptography and network security: Principles
and practice, chapter Intruders: Intrusion Detection. Prentice Hall,
fourth edition, 2006. p. 14

Bibliography 205

[Staniford et al. 2002] S. Staniford, J.A. Hoagland and J.M. McAlerney.
Practical automated detection of stealthy portscans. Journal of
Computer Security, vol. 10, no. 1/2, pages 105�136, 2002. p. 2, 25

[Staudemeyer & Omlin 2009] R. Staudemeyer and C.W. Omlin. Feature set
reduction for automatic network intrusion detection with machine
learning algorithms. In Proceedings of the Southern African Telecom-
munication Networks and Applications Conference (SATNAC), 2009.
p. 105

[Sung 2003] S. Sung A.H. Mukkamala. Identifying important features for
intrusion detection using support vector machines and neural networks.
In Proceedings of the Symposium on Applications and the Internet
(SAINT), pages 209�216. IEEE Computer Society, 2003. p. 26, 95, 96

[Tripunitara & Dutta 1999] M.V. Tripunitara and P. Dutta. A middleware
approach to asynchronous and backward compatible detection and
prevention of ARP cache poisoning. In Proc. 15th Annual Computer
Security Applications Conf. (ACSAC '99), pages 303�309. IEEE
Computer Society, 1999. p. 17

[Tripwire 2011] Tripwire. TripwireIDS. World Wide Web electronic
publication, 2011. http://tripwire.sf.net/. p. 14, 22

[Vladimir et al. 2000] M. Vladimir, V. Alexei and S. Ivan. The MP13
approach to the KDD'99 classi�er learning contest. SIGKDD
Explorations Newsletter, vol. 1, pages 76�77, 2000. p. 27, 120

[Wang & Stolfo 2004] K. Wang and S.J. Stolfo. Anomalous payload-based
network intrusion detection. In Recent Advances in Intrusion
Detection, pages 203�222. Springer, 2004. p. 25

[Werbos 1990] P.J. Werbos. Backpropagation through time: what it does and
how to do it. Proceedings of the IEEE, vol. 78, no. 10, pages 1550�1560,
1990. p. 3, 59

[Williams & Zipser 1989] R.J. Williams and D. Zipser. A learning algorithm
for continually running fully recurrent neural networks. Neural
Computation, vol. 1, pages 270�280, 1989. p. 33, 61, 76

[Williams & Zipser 1995] R.J. Williams and D. Zipser. Backpropagation:
Theory, architectures, and applications, chapter Gradient-Based
Learning Algorithms for Recurrent Networks and Their Computational
Complexity, pages 433�486. Lawrence Erlbaum, 1995. p. 33, 59, 61,
76

206 Bibliography

[Witten & Frank 2005] I.H. Witten and E. Frank. Weka�machine learning
algorithms in java, chapter The Weka Machine Learning Workbench,
pages 363�484. Morgan Kaufmann, 2005. p. 99

[Wotring et al. 2005] B. Wotring, B. Potter and M.J. Ranum. Host integrity
monitoring using osiris and samhain. Syngress Media Inc, 2005. p. 14,
22

[Yeung & Chow 2002] D. Yeung and C. Chow. Parzen-window network
intrusion detectors. In Proceedings of the 16th International
Conference on International Conference on Pattern Recognition,
volume 4, pages 385�388, 2002. p. 28, 123

[Zhang et al. 2001] Z. Zhang, J. Lee, C. Manikopoulos, J. Jorgenson and
J. Ucles. Neural networks in statistical anomaly intrusion detection.
Neural Network World, vol. 11, no. 3, pages 305�316, 2001. p. 28, 124

List of Abbreviations

ACC accuracy. p. 83

ARP address resolution protocol. p. 17

AUC area under curve. p. 85

BayesNet Bayesian network. p. 38

BPTT backpropagation through time. p. 55

C4.5 decision tree learning algorithm introduced by [Quinlan 1993]. p. 34

CEC constant error carousel. p. 63

CPU central processing unit. p. 16

CVE common information security vulnerabilities and exposures. p. 18

DARPA Defense Advanced Research Projects Agency. p. 90

DDOS distributed denial-of-service. p. 20

DNS domain name system. p. 17

DOS denial-of-service. p. 20

dos denial-of-service attack category. p. 91

DR detect(ion) rate. p. 83

FAR false alarm rate. p. 83

FFNN feed-forward neural network. p. 44

FNR false negative rate. p. 83

FPR false positive rate. p. 83

HIDS host intrusion detection system. p. 21

ICT information and communication technology. p. 1

IDS intrusion detection system. p. 13

IP internet protocol. p. 15

208 Bibliography

IPS intrusion prevention system. p. 29

IRC internet relay chat. p. 16

J4.8 WEKA's implementation of C4.5 algorithm. p. 125

KDD Cup Annual Knowledge Discovery and Data Mining competition. p. 93

LSTM long short-term memory. p. 63

MADAMID mining audit data for automated models for intrusion detection.
p. 26

MAUC multi-class AUC. p. 86

MLP WEKA's implementation of a FFNN. p. 99

MSE mean squared error. p. 83

nBayes naïve Bayes. p. 37

NIDS network intrusion detection system. p. 21

probe network probe attack category. p. 91

r2l remote-to-local attack category. p. 91

RNN recurrent neural networks. p. 53

ROC receiver operating characteristic. p. 84

RTRL real-time recurrent learning. p. 55

SQL structured query language. p. 16

SVM support vector machine. p. 48

TCP transmission control protocol. p. 15

TNR true negative rate. p. 83

TPR true positive rate. p. 83

u2r user-to-root attack category. p. 91

UDP user datagram protocol. p. 15

WEKA Waikato Environment for Knowledge Analysis. p. 125

	Introduction
	Motivation
	Premises
	Research Questions
	Technical Objectives
	Research Methodology
	Thesis Contributions
	Thesis Overview

	Network Intrusion Detection
	Introduction
	Phases of Compromise
	Vulnerabilities and Threats
	Denial-of-Service
	System Scanning
	System Penetration

	Data Sources
	Host Intrusion Detection
	Network Intrusion Detection

	Detection Techniques
	Signature Detection
	Stateful Protocol Analysis
	Anomaly Detection

	Machine Learning Techniques
	Event Correlation and Report
	Conclusions

	Data Mining Methods
	Introduction
	Decision Trees
	Bayesian Classification
	Naïve Bayes
	Bayesian Networks

	Backpropagation Neural Networks
	The Perceptron
	Linear Separability
	The Perceptron and Delta Learning Rule
	The Sigmoid Threshold Unit
	Feed-Forward Networks and Backpropagation

	Support Vector Machines
	The Maximum Marginal Hyperplane
	The Soft-Margin Method
	Kernel Functions
	The Kernel Trick

	Recurrent Neural Networks
	Basic Architecture
	Backpropagation Through Time
	Real-Time Recurrent Learning
	The Vanishing Error Problem

	LSTM Recurrent Neural Networks
	Constant Error Carousel
	Memory Cells
	Memory Blocks
	The Forward Pass
	Forget Gates
	Backward Pass
	Peephole Connections

	Conclusions

	Extracting Salient Features for IDS
	Introduction
	Performance Metrics
	Measuring IDS Performance
	Simple Performance Measures
	The Mean Squared Error
	ROC Analysis
	Comparison of Methods

	Attribute Search Strategies
	Forward Selection and Backward Elimination
	Information Gain and Decision Trees
	Domain Knowledge

	DARPA and KDD Cup '99 Datasets
	Extracting Salient Features
	Custom Data Preparation and Preprocessing
	Visualisation of Class Distributions
	Feature Extraction using Decision Tree Pruning

	Minimal Sets for All Attacks
	The 11 Feature Minimal Set
	The 8 and 4 Feature Minimal Sets

	Minimal Sets for Individual Attacks
	Detecting Network Probes
	Detecting `dos' Attacks
	Detecting `r2l' Attacks
	Detecting `u2r' Attacks

	Conclusions

	Evaluating Static Classifiers for IDS
	Introduction
	Criticism of the DARPA Datasets
	Results of the KDD Cup '99 Competition
	Other Results
	Classifier Performance Metrics
	Performance Analysis Using All Features
	Comparison of Feature Sets
	Two-Class Categorisation
	Multi-Class Categorisation

	Performance Analysis with Minimal Feature Sets
	Multi-Class Categorisation
	Individual Attack Classes

	Discussion
	Conclusions

	Modelling IDS as a Time Series
	Introduction
	Experiment Design
	Experimental Parameters
	Network Topology
	Parallelisation

	Experiments
	Performance Analysis Using All Features
	Multi-Class Categorisation
	Individual Attack Classes

	Performance Analysis with Minimal Feature Sets
	Multi-Class Categorisation
	Individual Attack Classes

	Classifier Performance Comparison
	Conclusions

	Conclusions
	Tables and Figures
	KDD Cup '99 Features
	KDD Cup '99 Traffic Types
	Distribution Histograms
	Scatter Plots
	LSTM Neural Network

	Bibliography
	List of Abbreviations

