See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/348024007

Extracting Speech from Motion-Sensitive Sensors

Chapter - December 2020

DOI: 10.1007/978-3-030-66172-4_9

CITATIONS
2

2 authors:

a Safaa Azzakhnini
- 6 PUBLICATIONS 19 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

roject  SUASecLab View project

All content following this page was uploaded by Safaa Azzakhnini on 09 January 2021.

The user has requested enhancement of the downloaded file.

READS
182

Ralf C. Staudemeyer

University of Applied Sciences Schmalkalden

34 PUBLICATIONS 414 CITATIONS

SEE PROFILE

ResearchGate


https://www.researchgate.net/publication/348024007_Extracting_Speech_from_Motion-Sensitive_Sensors?enrichId=rgreq-8b96a7836c47fe7d6a9279a1c3f3ba89-XXX&enrichSource=Y292ZXJQYWdlOzM0ODAyNDAwNztBUzo5NzgwNDM0MDExNDYzNzJAMTYxMDE5NTEyNjU1Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/348024007_Extracting_Speech_from_Motion-Sensitive_Sensors?enrichId=rgreq-8b96a7836c47fe7d6a9279a1c3f3ba89-XXX&enrichSource=Y292ZXJQYWdlOzM0ODAyNDAwNztBUzo5NzgwNDM0MDExNDYzNzJAMTYxMDE5NTEyNjU1Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/SUASecLab?enrichId=rgreq-8b96a7836c47fe7d6a9279a1c3f3ba89-XXX&enrichSource=Y292ZXJQYWdlOzM0ODAyNDAwNztBUzo5NzgwNDM0MDExNDYzNzJAMTYxMDE5NTEyNjU1Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8b96a7836c47fe7d6a9279a1c3f3ba89-XXX&enrichSource=Y292ZXJQYWdlOzM0ODAyNDAwNztBUzo5NzgwNDM0MDExNDYzNzJAMTYxMDE5NTEyNjU1Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Safaa-Azzakhnini-2?enrichId=rgreq-8b96a7836c47fe7d6a9279a1c3f3ba89-XXX&enrichSource=Y292ZXJQYWdlOzM0ODAyNDAwNztBUzo5NzgwNDM0MDExNDYzNzJAMTYxMDE5NTEyNjU1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Safaa-Azzakhnini-2?enrichId=rgreq-8b96a7836c47fe7d6a9279a1c3f3ba89-XXX&enrichSource=Y292ZXJQYWdlOzM0ODAyNDAwNztBUzo5NzgwNDM0MDExNDYzNzJAMTYxMDE5NTEyNjU1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Safaa-Azzakhnini-2?enrichId=rgreq-8b96a7836c47fe7d6a9279a1c3f3ba89-XXX&enrichSource=Y292ZXJQYWdlOzM0ODAyNDAwNztBUzo5NzgwNDM0MDExNDYzNzJAMTYxMDE5NTEyNjU1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Staudemeyer?enrichId=rgreq-8b96a7836c47fe7d6a9279a1c3f3ba89-XXX&enrichSource=Y292ZXJQYWdlOzM0ODAyNDAwNztBUzo5NzgwNDM0MDExNDYzNzJAMTYxMDE5NTEyNjU1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Staudemeyer?enrichId=rgreq-8b96a7836c47fe7d6a9279a1c3f3ba89-XXX&enrichSource=Y292ZXJQYWdlOzM0ODAyNDAwNztBUzo5NzgwNDM0MDExNDYzNzJAMTYxMDE5NTEyNjU1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Applied_Sciences_Schmalkalden?enrichId=rgreq-8b96a7836c47fe7d6a9279a1c3f3ba89-XXX&enrichSource=Y292ZXJQYWdlOzM0ODAyNDAwNztBUzo5NzgwNDM0MDExNDYzNzJAMTYxMDE5NTEyNjU1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Staudemeyer?enrichId=rgreq-8b96a7836c47fe7d6a9279a1c3f3ba89-XXX&enrichSource=Y292ZXJQYWdlOzM0ODAyNDAwNztBUzo5NzgwNDM0MDExNDYzNzJAMTYxMDE5NTEyNjU1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Safaa-Azzakhnini-2?enrichId=rgreq-8b96a7836c47fe7d6a9279a1c3f3ba89-XXX&enrichSource=Y292ZXJQYWdlOzM0ODAyNDAwNztBUzo5NzgwNDM0MDExNDYzNzJAMTYxMDE5NTEyNjU1Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

DPM2020_ CBT2020, 022, v2 (final): ’Extracting speech from motion-sensitive sensors’

Extracting speech from motion-sensitive sensors

Safaa Azzakhnini' and Ralf C. Staudemeyer?

! Mohammed V University, Faculty of Sciences, Morocco
2 Schmalkalden University of Applied Sciences, Germany
safae.azzakhnini@gmail.com
r.staudemeyer@hs-sm.de

Abstract. The increasing presence of wireless sensor networks and the
blanket re-use of the resulting data volumes by Al-based systems raises
pressing ethical questions about the impact of these technologies on our
society. One of the commonly used technologies is Smart Phones and
similar mobile communication devices. These devices are equipped with
rich sensors that provide an advanced and comprehensive user experi-
ence. However, it is a well-known problem that the presence of numerous
sensors is of major concern to the privacy of users and their social envi-
ronment. Previous studies already revealed that motion-sensitive sensors
actually react to human speech. In this regards, Deep Neural Networks
(DNN) proved very successful to model high-level abstractions in data.
Our main focus is highlighting (i) the potential risks related to these
sensors leaking private information about speech and (ii) the ethical im-
plications of advances in (deep) machine learning as a threat to privacy.
We showcase a simple attack in which collected data from accelerometer
and Vibration Energy Harvester (VEH) sensors can be used to eaves-
drop on speech. We propose a multistage stacked auto-encoder model
that learns time and frequency features. We demonstrate the efficiency
of our model with poor quality data and a very low sampling rate. We
investigated three classification tasks: gender identification (i), hotwords
detection (ii), and (iii) recognition of simple phrases selected. Our results
confirm that motion-sensitive sensors are a rich source of personal data,
from which highly sensitive information about people in close proximity
to the sensor emerges.

Keywords: mobile devices - users privacy - deep neural networks- data
fusion

1 Introduction

Privacy is increasingly a concern in today’s digitally connected world. Personal
data is being collected and stored in several daily used devices such as smart-
phones, mobile devices and wearables. These devices are often equipped with
sensors to provide services based on the according sensor readings, like location,
movement, temperature, and alike. The data from such sensors, however, can
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also be used for other purposes. Meanwhile, machine learning is a field of re-
search that became a core component of many real-world applications in many
domains including health, transportation, energy, education, banking, biomet-
rics to cite a few. The diverse and large availability of data, coupled with rapid
technological advances in machine learning algorithms (which learn from data),
is changing society markedly. Although it enables the development of many tools
with the potential of bringing good to society, their misuse might also generate
or inflate risks that harm society and the private life of individuals [27,4,7].
In this work, we address the privacy concern raised when the combination of
unprotected data collection and advanced learning algorithms may lead to non-
transparent inferences. We mainly focus on data collected from sensors built-in
mobile and wearable devices. We investigate how data created by a movement
sensor and an energy harvesting component can be used to extract information
about human voice communication.

Sensor data has already received remarkable attention from the security re-
search community, as to better understand the potential impact of this data
on user privacy. Projects have investigated opportunities to identify and track
users [23,11,19,3]. This was investigated in particular with the acceleration sen-
sor [32,28,25,31,38,8,14,34]. These studies did also show that the motion sensors
included in smartphones are sufficiently sensitive to allow the identification of
acoustic information based on the readings induced by sound waves. An accord-
ing investigation of data provided by gyroscopes was performed by [24]. This
paper was inspired by works discussing such effects of acoustics on gyroscope
measurements [9,12,13]. The authors there demonstrated by a rich experimental
study that gyroscope data is sufficiently sensitive to extract information about
the original audio signal. This included the identification of the speaker’s gender
as well as an isolated hot-word. In [37] the authors investigate accelerometer
data for hot-word detection. The main motivation is to enable accurate low-
energy and low-cost implementation of voice control by using the accelerome-
ter instead of the microphone. The obtained accuracies were competitive with
voice control applications such as “Google Now” and “Samsung S Voice”. How-
ever, mobile operating systems limit the sampling rate (usually to 200Hz). Low
sampling rates pose a hard limit on the available data and therefore are a sig-
nificant challenge to speech reconstruction. To overcome this challenge, a recent
work [17] has proposed an eavesdropping attack by leveraging a distributed form
of time-interleaved analog-digital-conversion to approximate a higher sampling
rate. Combining the data provided by a geophone, an accelerometer, and a gy-
roscope they were able to reconstruct intelligible speech. A threat analysis of
extracting speech signals from motion sensors of smartphones is provided by [1].
The authors there examined the presence of speech information in accelerometer
and gyroscope data by studying many possible attack scenarios and analysing
the behaviour of these sensors. Furthering this track of investigations a recent
publication explored vibration energy harvesters (VEH) and whether they can
be used like a sensor [20]. VEHSs convert physical movement into electric energy,
often to extend battery life. Because of the high availability of vibration sources,
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VEHs are considered an effective energy harvesting option for low-power mo-
bile devices, like for the Internet of Things (IoT). The authors there also notice
that VEHs can be sensitive enough to detect hot-words in speech. In other re-
cent works, the authors propose an eavesdropping attack based on accelerometer
readings. The authors in [2] studied an accelerometer-based speech recognition
under the setup that the accelerometer is on the same smartphone as the speaker.
Moreover, the authors in [5] design a deep learning-based framework to recognize
and reconstruct speech signals only from accelerometer measurements.

Contributions In this paper, we propose to use DNNs on sensor data to increase
the accuracy in recognising voice patterns. We want to determine the potential
risks related to privacy when such data is not protected. Here we focus on the
data collected from a VEH and an accelerometer while users were speaking as
collected in a preceding study by [20]. Our intentions are twofold: Firstly we
want to highlight the improved ability to extract acoustic patterns from sensors
not primarily used for acoustic information by using DNNs. Secondly, we want
to explore if the combination of data from different sensors can significantly
improve the detection rates. We perform an experiment by using a DNN based
on a stacked auto-encoder upon the collected data. Our model extracts acoustic
features by exploring both time and frequency representations. The extracted
features are then used in supervised classification to identify the speaker’s gender,
detect a simple hot-word, and distinguish it from short sample phrases. We show
how the combination of the data provided by the VEH with the data of the
acceleration sensor significantly improves the recognition rates in comparison
to [20]. To that end we train the DNN with both sources. To the best of our
knowledge the effect of speech on motion sensors has so far only been performed
using manual feature extraction techniques [37,18,1,20,24,2] or using only one-
way sensor [5]. We, therefore, assume our approach of using deep neural networks
with different types of information in this context is novel.

Threat model When sensor readings expose voice communication additional
threats to privacy become apparent. The threat model changes as an attacker
then only needs access to sensor readings instead of the microphone directly.
The attack vector thereby is extended to any application having access to the
readings of relevant sensors, as for example on the user’s device in figure 1.
The attacker here can identify acoustic patterns in the accelerometer and
VEH readings. With the sensors used in the experiment, the user needs to be
physically close to the device [20]. However, this seems very likely when using
a mobile phone or a smart watch, which also happen to be the devices where
accelerometer and VEHs are (to be) used. Furthermore, the attacker does not
necessarily require direct access to the sensor data. We assume that access to
locally cached sensor readings may be sufficient to allow offline attacks. We
consider two scenarios in our study: In the first scenario, the attacker only has
access to the data of one source. With the available data, we can compare having
access to only the accelerometer or only the VEH. We determine how well the
DNN identifies the speaker’s gender, detect the hot-word, and identify short
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user makes call or uses
voice assistant attacker
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speech vibrations affect VEH

and accelerometer readings gender and phrase recognition

Fig. 1: example for an attack scenario

sample phrases for each of those data sets. In the second scenario, we assume
the attacker to have access to both, the accelerometer and the VEH. Here we
combine the data sets of the accelerometer and the VEH to train the DNN. We
can compare the results with those derived by using a single data source.

2 Background

This section describes the design of the investigated sensors and provides back-
ground information about the typical architecture of an auto-encoder and the
corresponding learning algorithm.

Vibration Energy Harvester (VEH) A VEH is a transducer that converts
kinetic energy from vibrations to electrical power. For low-power electronic de-
vices in specific environments, they can harvest enough energy to operate the
device [10,15,30]. A VEH can be seen as having three parts: the transducer
to convert the kinetic to electrical energy, a power-electronic interface, and
some electrical energy storage, like a battery [29]. Common VEH transducers
are piezoelectric, as this type has shown the highest potential for harvesting
energy [22,36]. Suitable vibration sources are diverse, as for example human mo-
tion, waves, wind, or vibrations of machinery. A typical piezoelectric element as
used in VEHs is illustrated in figure 2 where one end of a cantilever beam is
fixed to the device, while the other is set free to oscillate (vibrate). When the
piezoelectric is affected by vibrations, an AC voltage is generated by the accu-
mulation of positive and negative charges on the two opposing sides. The AC
voltage generated in general is proportional to the applied stress.

Acoustic effect Sound waves, when emitted, are moving through air and cause
pressure on the cantilever beam. Experiments [20] have demonstrated this effect
by having a person shout three times while physically near to the piezoelectric
part. The generated signal (see figure 3) shows how the VEH’s voltage peaked
with each shout.

Accelerometer Accelerometers turn acceleration into an electrical signal based
on the same operating principles as VEHs. The acceleration in different dimen-
sions can be translated to changing positions. Raw gyroscope data consist of
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three values indicating the acceleration along the x-axis, y-axis, and z-axis (usu-
ally corresponding to the up-down, right-left, and front-back movement respec-
tively).

Acoustic effect Recent work [37] showed that accelerometers are sensitive
enough to draw conclusions about human speech. The authors there recorded
sensor output while a speaker was spelling the vowel “A”. The spectrum analysis
of the output signal shows a considerable variation of the accelerometer readings
during speech. They reported that the human voice has sufficient sound pressure
to have detectable impact on smartphone accelerometers.

Stacked Auto-Encoders An auto-encoder (AE) is a type of artificial neural
network (ANN) for unsupervised learning. The learning objective of the AE is to
map the data of the input layer to the output layer in the way it is desired. The
result is an approximation of the so-called identity function, where the output is
a representation of the input. The architecture of an AE divides the ANN into
an encoder and a decoder. The encoder takes the data at the input neurons and
creates a “restricted” representation of it at the hidden layer. Since the hidden
layer is smaller than the input layer it learns only the most relevant aspects
of the input. The decoder then tries to reconstruct the original input from the
representation in the hidden layer. This produces a higher-level representation
from the lower-level representation of the input [6].

A stacked auto-encoder (SAE) is an ANN consisting of multiple hidden lay-
ers creating a deep neural network architecture. The SAE applies the so-called
greedy layer-wise pre-training strategy which addresses the error-causing van-
ishing gradient problem. In SAEs the input layer is the encoded layer trained on
the raw input. The output then is used as input to the next AE to obtain the
next encoded layer and this process is repeated for subsequent layers. Stacking
layers like this can then lead to deep stacked auto-encoders that carry some of
the interesting properties of deep models [6].

3 Learning Acoustic Information

Here we present an overview of our proposed approach and discuss details, before
presenting the experiments in the next chapter.
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Classification task Classification tasks are tied into information representa-
tion. The learning process on how to represent data is a critical step that on
the one hand should preserve as much information as possible from the input
data. On the other hand this process should eliminate redundancies to foster
the extraction of structures and properties. Motion sensors are designed to re-
spond to movement. Their output signals originate from physical movement of
an accordingly designed part of the sensor. They are particularly used for tasks
related to motion recognition, such as identifying physical activity. Modelling
motion sensor data to perform sound recognition is an especially challenging
task, because the sensors sensitivity is optimised towards such movements and
not sound.

The artificial learner requires preprocessed data in form of features to learn
from. A feature is a measurable property fed to the learning algorithm. These
are normally manually extracted relying on knowledge of a human expert. This
expertise is domain- and/or sensor-specific and is required for each new dataset
or sensor modality in order to engineer the suitable features for a specific applica-
tion. Therefore, the use of manual feature extraction is very limited. Furthermore
it cannot be generalised across different application domains. As accelerometer
and VEH sensors are of a non-acoustic nature, we do not benefit from a prior
knowledge about useful measurements to apply in order to extract the acoustic
information. To deal with this issue, we propose an unsupervised deep learn-
ing approach to automatically learn suitable features without relying on hand-
crafted features. Here features are automatically extracted from data through
layers were each successive layer acts as a feature extractor and is hypothesized
to represent the data in a more abstract way. This process is unsupervised, which
means that it is independent to a specific classification task. To this end we pro-
pose a SAE to discover relevant complex structures underlying speech and to
learn a deep and high-level representation robust to intra-class variability includ-
ing the sensor direction and the speaker speaking. An architectural overview of
our approach is illustrated in figure 4. It is divided into two main phases: unsu-
pervised feature learning, where we added the combination of the data-sources
as well, and supervised classification.

Feature learning In this step, we investigate time and frequency data sepa-
rately to train a bimodal representation from each sensor. We perform Fourier
transformations on the frequency data. Then we use the greedy layer-wise train-
ing for the SAE. Therein, the features learned in a hidden layer are used as input
to the next AE in order to produce a new representation of the data. By rep-
resenting the data through layers we enable learning of complex patterns across
data variations. After extracting the features separately from each source, that
is time and frequency, we combine them into a joined time-frequency represen-
tation. This joint representation leads to a shallow model, thereby making it
difficult for a single hidden layer model to directly find correlations between rep-
resentations that have been joined. We, therefore, again apply greedy layer-wise
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Fig. 4: The figure shows the whole network architecture. The two inputs are the fre-
quency and time representation of the VEH and the accelerometer data. Each layer
correspond to the hidden layer encoded using the autoencoder. The layers are stacked
using layer wise training strategy. The last layer represents the classifcation step per-
formed after the unsupervised features learning from previous layers.

training to improve discovery of high-level correlations across the two represen-
tations.

Data From Multiple Sources With the assumed availability of different sen-
sors, we then have separate types of data sources about a given moment. The
machine learning community assumes potential in improved learning algorithms
to specifically exploit such multi-modal data to form a unified picture [26]. Mod-
elling speech recognition from data of non-acoustic sensors is challenging. Addi-
tional problems to tackle are the limited sampling frequency and the interference
from the device’s original function (detecting movement, harvesting energy) with
our intended function (detecting spoken language). Our study specifically aims
to determine to what extent combining data provided by different sensors can
provide improved results. To that end, our multi-layer approach combines sepa-
rately trained models into a joint representation.
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Supervised classification We then use supervised classification on the ex-
tracted features. For this the fused representation functions as the input, thus
providing features across the original data sources. We repeat the three classifi-
cation tasks for the speaker’s gender identification, the hot-word detection, and
the recognition of the sample phrases.

4 Experimental study

In this section we are describing our experiments in more detail. We start by
presenting the available data and then explain how we pre-processed it and
performed the feature learning and classification.

Data The dataset we used is described in more detail in [20]. It is the only work
we are aware of that already studied the potential of detecting acoustic informa-
tion from VEH data. It contains the data for both, a VEH and an accelerometer,
while different persons performed identical tasks repeatedly. Involved were eight
individuals, four being male and four female, and the experiments were per-
formed with two different orientations of the devices (horizontal and vertical).
The devices were positioned close to the persons (3 c¢cm) and the experiments
repeated 30 times for the hot-word “Ok Google” and at least ten times for
the phrases “Good morning”, “how are you”, and “fine thank you”. Overall the
data-set contains 1155 samples. Figure 5, represents the accelerometer and VEH
sensor outputs while a person spoke the four phrases.

Y Ok google Ok google — xanis

EES WWWW«..M £ 20

g 500 2 200
o 200 400 600 800 1000 1200 1400 1600 0 500 1000 1500 2000

Fine thank you Fine thank you
3

]
2 w00

£30

— y-axis
— zaxis

Am

0 200 400 600 800 1000 1200 1400 1600
How are you

o 250 500 750 1000 1250 1500 1750
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Amplitud
g8

gqooj ‘
[ 200 400 600 800 1000 1200 1400 &0
Good morning 0 250 500 750 1000 1250 1500

Good morning

E s00

3unj )
r F
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Fig.5: The VEH signal (left) and the accelerometer outputs (x axis,y-axis, z-
axis on right) while the user is speaking the four phrases (”good morning”,
”okay google”, "fine thank you” and ”how are you”)

Preprocessing In the pre-processing we apply our domain knowledge to address
the specifics of the different data sources. As we face varying lengths of the
samples, we started by interpolating all the samples in the data to the mean
length. We separately handle the temporal and frequency representations. To
minimise the signal-to-noise ratio we filter the input signals and normalise them.
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On the frequency representation we apply a fourier transformation and calculate
the magnitude of the obtained complex values, which we then also normalised.
For the accelerometer data, we down-sample the signal to 200Hz. This is the
limit on sampling frequency as posed by the mobile operating systems Android
and i0S. We then interpolate the samples to their mean length and normalize
the data. After first learning features for each axis (x, y, and z), we then compute
the magnitude over the dimensions to obtain an overall feature vector. The three
acceleration channels were combined as one using square summing to obtain the
magnitude acceleration, which is orientation independent.

Feature Learning and Classification The training procedure for time and
frequency representations each is executed for 50 epochs, using a mini-batch size
of 30 and learning rate of 0.001. The RMSprop variant of the stochastic gradient
descent is used as the optimization algorithm. For the feature learning step, the
used number of hidden units for the first layer is 1200 and for the second layer
is 1000. For the classification we used and compared three common learning
algorithms in order to select the good learner that can find out the relevant
patterns from the obtained features from the Autoencoder. Principaly, Support
Vector Machine (SVM) using the RBF kernel with v = 0.01 and C = 100,
K-nearest neighbours (KNN) with K = 3 and Neural Network Classifier (NN)
with 2 hidden layers containing 100 units. The optimal hyperparameters were
optimized by cross-validated grid-search over a parameter grid.

FEvaluation In the evaluation we used a k-fold cross-validation with £ = 10.
For this we divided the data into k equal folds (portions). We then trained the
model on the & — 1 folds and test it against the remaining folds. That process
was repeated k& = 10 times. The final performance after that corresponds to the
average of the obtained values. We used cross-validation analysis to ensure that
all data was used for both, training and test. The classification of the proposed
framework was performed using the four metrics accuracy, precision, recall, and
F-measure.

5 Results and discussion
In this section we present the results from our experiments in detail.

Single Data-Sets We first evaluate the results from using the data of the ac-
celerometer or VEH on their own, each. Tables 1, 2 present the classification
performance for each of our metrics, that is accuracy (acc), precision (prec),
recall (rec) and F-measure (f-score), as determined for each of the classifications
(gender identification, hot-word detection, and phrase recognition) for each of
the used learning algorithms KNN, SVM, and NN (alg) for each of the data
representations time-only, frequency-only, and our model. These allow us to see
how our model compares to using only the time- or only the frequency-data. On
the hot-word classification the KNN and SVM algorithms with our model both
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Table 1: The obtained results (%) using only VEH data

Hot-word detection | Gender identification | Sentences recognition

alg. rep acc |prec | rec [f-score | acc |prec | rec |f- acc |prec | rec |f-
score score
time 74 76 74 74 71 72 71 70 62 62 62 60
KNN freq 69 69 69 69 76 s 76 76 55 55 55 53
time 71 72 71 71 70 71 70 69 63 64 63 61
SVM freq 69 70 69 69 76 s 76 76 54 54 54 53
time 70 72 70 70 62 64 62 61 61 62 61 60
NN freq 65 68 65 63 72 74 72 72 54 54 54 51

Table 2: The obtained results (%) using only accelerometer data

Hot-word detection Gender identification | Sentences recognition

alg. rep acc |prec | rec |f-score | acc |prec | rec |f-score | acc |prec | rec |f-score
time 71 72 71 71 83 83 83 83 58 59 58 56
KNN] freq 55 55 55 55 64 65 64 63 42 38 42 37

time 58 | 60 | 58 54 80 | 80 | 80 80 48 | 31 | 48 33
SVM|  freq 58 | 58 | 58 58 71| 2| 71 41 | 39 | 41 39
time 53 | 55 | 53 48 61 | 65 | 61 58 47 | 23 | 47 30
NN freq 54 | 56 | 54 50 66 | 68 | 66 65 45 | 35 | 45 34

achieved an accuracy of 75% when used on the VEH data and 76% when used on
the accelerometer data, in all cases out-performing the use of only time- or fre-
quency representations. For gender identification results, the best classification
performance was achieved by our model in combination with SVM, having an
accuracy of 86% using the accelerometer data and near 80% using the VEH data,
again out-performing the use of only one data-representation. The accuracy of
our model in recognizing the phrases was in the range of 64-65% for all combi-
nations but using NN on the accelerometer data and once more out-performed
the use of single data representations in all combinations. The F-score shows
comparable values. Therefore, we can conclude that features learned from the
joint representation of time and frequency information leads to a considerable
improvement of the classifications. Both, frequency and time representations,
contain important information that can be combined for better results here.
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We assume that more abstract features have been learned in the process. We
highlight that sufficient information about the original activity of shouting can
already be extracted with relevant accuracy even when using only one of the
data sources.

Table 3: The obtained results (%) combining the VEH and the Accelerometer
data

Hot-word detection Gender identification | Sentences recognition

alg. rep acc |prec | rec |f-score | acc |prec | rec [f-score | acc |prec | rec |f-score
time 78 79 78 78 81 81 81 81 69 69 69 67
KNN] freq 69 70 69 69 79 80 79 79 55 55 55 52
time 76 76 76 76 79 79 79 79 66 66 66 64
SVM freq 73 73 73 73 81 82 81 81 59 59 59 58
time 68 69 68 67 73 74 73 73 61 64 61 59
NN freq 71 72 71 71 79 80 79 79 59 59 59 57

Combination of Data-Sets Next we examine if access to multiple data sources
further increases the classifications. For this we repeated the training using both,
the VEH and the accelerometer data, as described above. The results are — for-
matted as the previous tables — shown in table 3. Combining the data-sources
has significantly increased the accuracy of the classifications across the board by
around 10%. The highest F-scores of 91%, 85%, and 77% for gender identifica-
tion, hot-words detection and recognition of phrases respectively, were achieved
when using the SVM classifier with our model. The increase was higher for our
model than if using only the time or the frequency representation. In each of its
levels, the ANN must have learned additional correlations between the data vari-
ables across frequency and time representations. Overall, the joint representation
has lead to remarkably improved accuracy.

In table 4 we compare our model with the results from the original work
from [20] which only used the VEH data. The authors there compared results
for different positions of the VEH. Recognising the importance of positioning,
we specifically wanted the DNN to cope with this, as we hardly can influence the
positioning in the scenario of spying. This way our results should be better suited
to assess the practicality of an according attack vector. Moreover, we applied
our model to the gyroscope data used by [24] for isolated words recognition. We
compare our results with those obtained by the authors for the user independent
case. The results show that our model provided better accuracy than the state
of the art works, that were based on manual features.

11
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method accuracy

Hot-words detection using VEH

in a horizontal position [20] 73%

Hot-words detection using VEH

in a vertical position [20] 63%

Hot-words detection using VEH

invariant to sensor orientation (our model) 75%

Hot-words detection combining VEH

with accelerometer (our model) 86%

Isolated words recognition (11 words) using gyroscope

with SVM (Speaker-independent) [24] 10%

Isolated words recognition (11 words) using gyroscope (our model)
Speaker-independent case 25%
Table 4: comparison with state of the art methods

The results show that our deep auto-encoder approach can improve the recog-
nition of acoustic patterns from non-acoustic sensors, here acceleration and volt-
age readings. We do not claim that the proposed approach represents a direct
substantial risk to privacy, yet, as the data-set is small and was derived in a
very specific setting. However, mobile sensors beyond the obvious microphone
and camera could become targeted by attackers as they — as of today — are
often less protected. Despite the fact that the data provided by such sensors is
always cluttered due to their main purpose, it still is possible to draw conclusions
on audio information from them by using two main approaches. The first is to
combine data from multiple sources by considering a multimodal architecture.
This will exploit the complementary between multiple modalities (information
obtained from multiple sensors) and will lead to more accurate results. The sec-
ond is to include a de-noising component in the autoencoder. In fact, de-noising
data is one of the areas where auto-encoders have been most successful [35].

Discussion Considering that such sensors might generally not be considered
as sensitive and therefore be less protected, they could rise to become popular
attack surfaces in the future. Based on our results an attacker with access to the
readings of multiple sensors must be regarded as dangerous, even if the primary
function of the sensors seem harmless at first. With today’s mobile devices many
people already carry a multitude of sensors around and the trend seems to be
for even more.

The findings compiled show that motion data are a rich source of personal
data. The misuse of such data using learning algorithms that can extract visible
and invisible patterns and correlations from it can lead to leakage of sensitive
information such as the individual’s speech. Furthermore, by combining differ-
ent data sources we can learn more than from one source independently. Thus,
more accurate information can be inferred from a combined analysis (in the
studied case the accuracy has increased by 10%), which increases the risk of the
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privacy breach. Recognizing the speech does not only give information about
what a speaker says, but also its attitude toward the listener and the topic un-
der discussion, and the speaker own current state of mind as well. Many works
have discussed the inferences that can be drawn from human speech extracted
from audio data [21]. Therefore, the inferred speech information from motion
sensors, in turn, can be used to deduce more non-transparent insights about in-
dividuals and manipulation about their private life [7]. Several examples of data
breaches were revealed where personal information was exploited for many pur-
poses, including political purposes [16], and others [33]. Therefore, the misuse
of such data can seriously affect an individual’s relationships, employability, or
financial status, or lead to negative consequences for essential rights and social
values such as freedom of expression, respect for private life. The privacy threat
of unexpected inferences from unprotected data sources is not limited to those
discussed in this paper. The problem of undesired inferences goes far beyond
motion sensors and the deduced insights are related to the samples present in
the used dataset. Thus, a larger database will contain a variety of character-
istics from personal attributes in addition to gender and identity or age. Such
attributes may include, emotions, personality traits, sexual orientation, ethnic-
ity, religious and political views to cite a few. This diversity of data will allow
discovering other correlations and obtaining more analysis. In sum, the aim of
the paper is mainly to raise awareness about the ethical and privacy implications
of the advancement of learning algorithms coupled with the growing availability
of data. This is achieved by demonstrating how machine learning can be used
as a tool for privacy breach and manipulation. Advances in technology change
how personal information is collected and analysed, and therefore create new
privacy risks. Thus the continued debate is needed to guide the development not
only of technology but also of the policies that enable its use. And governments
need to be more serious about finding a solution to limit the power that larger
companies have over citizens.

6 Conclusions and future work

In this paper, we investigate the technical feasibility of speech inference from mo-
tion data using advanced machine learning models. we explore how non-acoustic
sensor readouts can be used in uni-/multi-modal attacks. We propose a multi-
level time-frequency based deep neural network to extract acoustic patterns from
an accelerometer sensor and an energy harvesting component. Our model detects
gender, single hot-words and spoken phrases with an accuracy of up to 91%,
85%, and 77% respectively. This findings show that motion sensors data are a
rich source of personal data. They can be sufficient to obtain information about
a device holder’s speech especially when used data is combined from multiple
sensors. By combining data sources we can learn more than would be the case
from analysing single source independently, and more accurate predictions may
be inferred which increases issues about privacy or decreases the privacy guar-
antee. An attacker with access to an accelerometer and some sensitive energy

13
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harvesting module is able to eavesdrop on human speech and draw conclusions
about its content. Therefore, they could be considered private data in the same
sense as audio data. The privacy of mobile device and wearables users, is a con-
cern of growing importance. The zero permission nature of embedded motion
sensors make acquiring the data easier. The collection of such data combined
with a misuse of machine learning algorithms (which learn from data) can lead
to a serious privacy risks and leakage of sensitive inferences about the user in-
cluding his speech. The problem of undesired inferences goes far beyond motion
sensors data and needs to be addressed for other data sources as well. Therefore,
further research is required into the privacy implications of unprotected data
collection taking into account the evolving state of the art in machine learning
algorithms. Furthermore, a continued debate is needed not only about control
over all sensor data, but also to guide the development of technology and of the
policies that enable its use.

We consider the contents of this article to be early work on this topic. An
interesting next step would be to examine the attack vector under real-world
conditions. For further experiments a larger annotated data-set including more
sensors as found in smartphones and a possibly large set of recorded situations
would be needed. Only then would it be possible to realistically judge the threat
that for example is posed by smartphones today, when installed applications are
allowed access to sensors without care. Many factors usually do affect sensors and
different sensors each have their specifics in how they are affected. This provides
a large variety of possible experiments from recording and annotating data to
performing analyses on that data then. Concerning the neural network it might
be beneficial to use recurrent neural networks with long-short-term-memory to
capture the temporal relationships in the data.
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