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ABSTRACT
The increasing adoption of the Internet of Things adds new
risks for the privacy of everybody. Current privacy enhanc-
ing technologies are not sufficient for the new threats. This
papers explains one of the most powerful protocols, the DC-
net. The DC-net protocol, while more than 30 years old,
was never used in real-life due to its overhead and sensitiv-
ity against disrupters. However, many improvements have
been contributed to the original protocol, which will be sum-
marized in this paper. The main contribution of this work is
the implementation of a proof-of-concept DC-net suited for
constrained microcontroller-based devices. The challenges
faced and the optimizations done throughout the implemen-
tation will be presented.

Keywords
Security, Unobservable communication, Privacy, Confiden-
tiality, Unlinkability, Internet-of-Things

1. INTRODUCTION
Privacy is often simply reduced to confidentiality. However,
an attacker who is able to mine big quantities of data like
network traffic can extract useful information and commu-
nication patterns that may reveal sensitive information of
users. Powerful Big Data technologies combined with the
ubiquity of sensors in the Internet of Things can threaten
the privacy of everyone. Simple encryption doesn’t solve
these problems, as they can’t hide the linkability between
sender and receiver. Hiding the information who talked
to whom or which thing communicated with which things
yields into the topic unobservable communication. While
there are currently technologies in use like the TOR net-
work 1 which is based on Mixing networks, that try to en-
able its users anonymous and unobservable communication,
a number of attacks [2,12] have shown, that these can’t hold
their promises. It’s a good idea to look out for other pro-
tocols which basic security offerings are much stronger than
current technologies, like the Dining Cryptographers net.

David Chaum presented in [4] a powerful communication
protocol that provides unconditional secure unobservable
communication: the Dining Cryptographers Net (DC-net).
While the anonymity level guaranteed by a DC-net is much
more higher than the anonymity of networks like TOR, DC-
nets haven’t been adopted in reality due to its practical prob-
lems like scalability and sensitivity for disrupters.

1https://www.torproject.org, last visited 27.02.2017

This paper examins the general applicability of a DC-net in
a typical Internet of Things environment.
Section 2 explains the general concept and the initial idea
behind DC-nets, followed by a detailed overview of the fol-
lowed work. The sections ends with the presentation of two
real DC-net implementations. Section 3 then introduces the
IoT specific needs, problems and challenges in terms of un-
observable communication. After a short introduction of
the state-of-art in terms of privacy and anonymity preserv-
ing techniques, the approaches presented in Section 2 are
reviewed for their applicability for a IoT DC-net. A cus-
tom DC-net protocol, suited to the use-case presented, will
be developed, discussed and implemented. Based on this
prototype, the insights gained through the implementation
will be explained and the challenges will be discussed. The
section ends with an evaluation of this proof-of-concept im-
plementation

2. UNOBSERVABLE COMMUNICATION
This section now presents the Dining Cryptographers Net
(DC-net). Starting with the original idea by David Chaum
in 1988 [4], various improvements to the original DC-net
have been made to fix vulnerabilities and improve the over-
head. While DC-nets haven’t yet been adopted in real-
ity, however, in 2003 a first implementation was presented.
Later, another implementation appeared - the first one that
is open sourced and addresses many problems of DC-nets in
practice. Those implementations will be presented and are
serving as a basis for the IoT based DC-net presented in the
next section.

Chaum introduced its idea with a little story: three cryp-
tographers were having dinner in a restaurant and finally
someone paid the dinner - either one of the cryptographers
or their employer, the NSA. Now, they want to find out who
paid the bill, either one of them or the NSA. In case one of
the cryptographers paid, however, they don’t want to reveal
who exactly. They think about the following protocol in or-
der to achieve this.

The cryptographers are sitting on a round table (depicted in
figure 1) and each one of them is flipping an unbiased - that
is heads or tail are equally likely - coin secretly and show the
outcome to his right neighbor. We refer to heads with ”1”
and to tails with ”0”. Now, each cryptographer combines the
coin toss on his left and the one on the right (the coin the
tossed) with the XOR operation. A cryptographer who was

https://www.torproject.org


Figure 1: One of the cryptographers has paid
(green). Here: 0⊕ 0⊕ 1 = 1 which shows that one of
the cryptographers paid and not the NSA.

not paying the bill, writes the result on his napkin in front
of him, whereas a cryptographer who paid the bill, writes
the negation of the result. The cryptographers see the lo-
cal results from the others, and combine these results again
with XOR, which we are referring as the global sum.

If, and only if, one of the cryptographers paid and is thus
inverting the result of his local XOR operation, the global
sum will be 1, since there exists now an odd number of
ones. Assuming, that the coins were unbiased and no pair
of cryptographers is colluding 2 this protocol is uncondi-
tionally secure. In case the NSA paid, the global sum is 0
and there is no problem with anonymity. In case one of the
cryptographers was paying, it is equally likely for one cryp-
tographer who wants to investigate the payer, that his left
or right neighbor was paying. The XOR operation plays an
important role here (later it will explained, that also other
mathematical structures can be used): since every coin toss
Cn, n ∈ 1, 2, 3 exists twice in the global sum. Due to the
commutativity and associativity of the XOR operation, the
individual coin tosses

Localcrypto1 ⊕ Localcrypto2 ⊕ Localcrypto3

= (C1 ⊕ C2)⊕ (C2 ⊕ C3)⊕ (C3 ⊕ C1)

= (C1 ⊕ C1)⊕ (C2 ⊕ C2)⊕ (C3 ⊕ C3)

= 0⊕ 0⊕ 0 = 0

(1)

cancel out in the global sum yielding always 0 as the global
result. Only if one cryptographer who wants to send a (1-
bit) message inverses his local result, the global sum gets
1.

Coin tossing and sharing the result with the neighbors prac-

2There is never anonymity if all participants are colluding
against one single victim.

tically means exchanging secrets through a secure channel.
For transmitting longer messages, many keys can be tossed
beforehand and the outcomes can be shared. If the partici-
pants of a DC-net share secrets through a unconditional se-
cure channel, the DC-net provides unconditionally security.
If key exchange is done through a public-key cryptography
system, the security of a DC-net reduces to the degree of
computationally security (relying on the security of public-
key cryptography). The anonymity of a single node in a
DC-net is expressed as the anonymity set for this node, that
is the set of honest nodes which the node is sharing secrets.
Chaum proposes a ring as a possible network topology, that
has compared to a traditional ring where messages often only
travel have through the ring before the recipient gets them,
a fourfold increase in bandwidth. To reduce bandwidth, not
the whole message should be redirected by each ring node,
instead, every node can build the XOR of his message and
keys with the message he got from the previous node. This
way, one global broadcast round has to travel twice through
the ring in order to received completely by the participants:
in the first round every participant forwards the incoming
message together with his local output and in the second
round, the global sum is broadcasted to all members. An-
other problem Chaum points out, are disrupters: malicious
nodes, or nodes with faulty behavior can disturb the whole
communication by sending for example random data and
thus making the global message unreadable. DC-net pro-
vides untraceability - also for those attacker - which makes
it hard to detect them. Chaum proposes a trap mechanism,
in which honest sender reverse a sending slot but instead of
sending actual messages, they place traps in it by sending a
random message with a secret key. If the attacker tried to
disrupt the communication in this round by sending in the
reserved slot of another node, the honest node that placed
the trap detects this and signals this to the other partic-
ipants together the with his secret for this round and his
decrypted message. Waidner and Pfitzmann generalize and
improves the concept of DC-nets [20, 21]. They generalize
the concept of sender untraceability of superposed sending.
The set of participants P = P1, ..., Pn are connected through
a graph G. Instead of relying on the XOR operation, any
abelian finite group (F,⊕ ) can be chosen, which is called ”al-
phabet”. Participants share common secrets, that is, partic-
ipant Pi and Pj share the secret key Ki,j = Kj,i. G denotes
the key sharing graph, containing all nodes who shared se-
cret keys with each other. Then each participant Pi chooses
a message character Mi: 0 or the actual message if it wants
to send (and owns the current slot). Then, it combines the
message Mi together with all keys sharing with each other
in this round. The sign function is used to create the van-
ishing effect (like x⊕ x = 0 with the XOR operation).

Oi = Mi ⊕
∑

Pi,Pj∈G

sign(i− j) ·Ki,j (2)

This local output of one node is then broadcasted to all other
nodes, and finally each node can compute the global result
S of this messaging round:



S :=

n∑

j=1

Oj (3)

Finally, all keys in occur twice in the sum with different signs
leading to vanishing of all keys and empty messages and
only the actual message of the sender who sends a message
Mi 6= 0 is visible to all participants while preserving the
anonymity of the actual sender.

Waidner also generalizes the reservation technique describe
by Chaum to additive groups of integers modulo m. Each
participant who wants to send randomly choose a position
in a reservation vector with r slots, and puts 1 into this posi-
tion. After broadcasting those vectors, each participant can
sum the positions up: 0 in a position means no-one reserved
this slot, 1 means one participant successfully reserved this
slot without collisions and n > 1 means more than one par-
ticipant wants to send in this slot. All slots with collisions
are skipped and only successfully reserved slots are used by
the specific participant.

Bos and den Boer presented another reservation approach
based on superposed sending of a polynomial function [3].
As pointed out in [21] Chaum’s construction of DC-net relies
on the ”reliable broadcast assumption”: A reliable broad-
cast means that a broadcast message sent by a sender is re-
ceived by every honest receiver and second is received with-
out changes.

In [10] Golle and Juels propose a new approach to detect
disrupters in a DC-net with less overhead than the original
technique used by Chaum [4]. Instead on relying on addi-
tional (costly) trap rounds where no actual communication
happens, Golle and Juels instead propose a technique that is
based on cryptographic proofs. Furthermore, their approach
allows to recover from a corrupted message - occurred either
through jamming of a disrupter or network faults - with
only one additional broadcast round. Their improved DC-
net protocol still maintains the property of non-interactivity,
that is, once two nodes have shared secret keys, there is no
more direct communication needed between them.

2.1 Implementations
2.1.1 The first implementation: Herbivore
Herbivore [9] is the first implementation of a DC-net based
network protocol in practice. The goal of Herbivore is to
build a DC-net based network over the Internet and tries to
mitigate the scalability issues and the impact of disrupters
on DC-nets. The main idea is to partition the network into
smaller sub-groups in the size of tens of nodes which perform
the ”Round Protocol” which is based on the DC-net proto-
col. The ”Global Topology Control” protocol manages the
connection between the cliques and the entry of new nodes
to the networks.

Global Topology Control - Partitioning the network into
subgroups.
New nodes joining the Herbivore network contact any of the
participants of the Herbivore network. It is important that
a newly arriving node cannot freely choose the subgroup to

Figure 2: Network topology of Herbivore. On the
left the global chord that connects the subgroups
(”cliques”). On the right a single subgroup, com-
muncation rounds are organized in a star (the grey
lines indicate the key graph - each node shares keys
with each others). Adapted from [9].

join: attackers could try to compromise one specific clique
and try to deanonymize the nodes in it by colluding. Instead,
the authors propose a challenge-based protocol: a new node
creates a key pair (Kpublic,Kprivate) and then randomly gen-
erates vectors y such that y 6= Kpublic and the lower mk bits
of f(Kpublic) are equal to those of f(y) for a given one-way
function f . The value g(Kpublic, y) with another one-way
function g is then used to contact the node, whose node key
is closed numerically.

After contacting that specific clique, the clique’s nodes can
check that f(Kpublic), f(y) and check that the lowestmk bits
match. They check that the value g(Kpublic, y) matches
to their group and was not used before by another node.
With this method, an attacker cannot freely choose a clique
key g(Kpublic, y) as it would need to compute the inverse of
the one-way function g. By increasing the size of mk it is
possible to increase the costs for entering the network and
therefore the costs for attackers who are trying to guess a
right key by computing many keys beforehand. The authors
further increase the security by requiring nodes to choose y
with the lower bits encoded with the current date as a time
stamp. Attackers then lose the opportunity to generate a
large key dictionary (rainbow table) beforehand. The cliques
are globally organized in a Chord [18]. If single subgroups
get to big, they get split into two new cliques. To maintain
anonymity when the size of a clique falls under a certain
threshold, the clique gets destroyed and the nodes have to
join again the network as described above.

Communication within a subgroup.
After successfully joining a clique, a new node has to estab-
lish common secrets with every node member in the clique.
The communication is then divided into three phases: reser-
vation, transmission and exit.

In the reservation phase, transmission slots are assigned to
nodes that want to communicate their messages. This is
done through a reservation vector which is zero in every



component except one position that gets randomly picked
by the node. Each node prepares such a reservation vector
and broadcasts it to the other members. Reservations can
collide and can be detected in the reservation phase if an
even number of nodes trying to use the same slot, or in case
of an odd number of nodes are trying to reserve the same
slot, the collision will show up in the transmission phase.

In the transmission phase, every node transmitting sets the
bit to 1 in its transmission slot. Every node is sending its
vector and receiving the vector from others. Hence, a node
sending in slot i can detect if also other malicious nodes are
trying to send in its slot. It therefore tries to retransmit
its messages in another round and after a fixed number of
unsuccessful retires, it rejoins the Herbivore at a different
location.

The exit phase tries to make sure that long-running network
transactions can be processed and received by clients who
want to leave through a signaling mechanism. This ensures
that attackers can’t perform intersection attacks on nodes
that have long-running transactions in place and change the
network. The key graph in a Herbivore subgroup is a fully
connected graph, that is every node shares secrets with every
other node. Message exchanges, however, are done in a star
topology, where every node send its keystreams and message,
combined with XOR, to the center of the star which directs
those messages to all other nodes. In order to get equal
load on the participating nodes, the center of the star is
changing after every round. This ensures that the latency of
transmissions is independent of the size and the bandwidth
of each node, however it reduces basically to the slowest
node. With the design of Herbivore, the authors consider
many possible attacks:

Topology Attacks: A Chord as the global topology and
random, challenge-based entry protocol tries to ensure that
attacker can’t explicit compromise a specific clique. For
cliques of the size 128 and 90% of the total network com-
promised, there’s still only a chance of 0.9127 ∼ 1.5 × 10−6

for taking over the whole network. However, as noted in [8]
an attacker could try to isolate single victims by disturbing
groups which it can’t fully compromise and ”behave well” in
groups in which it wants to isolate the victim. This could
increase the probability for the victim to change into the
group the attacker wants it to be over the long term.

Sybil Attacks: Attackers could try to compromise and dis-
turb the network by entering under different identities to
the network. Herbivore address this by limiting the rate at
which new nodes can enter the network with the challenges-
based protocol which increases the cost to join the network.

Intersection Attacks: Intersection Attacks on long run-
ning transmissions are considered in the exit phase. Also
without malicious attackers, nodes can disappear due to var-
ious failures. With a clique size of 128 nodes and a mean
node lifetime of 10hours, a node can anonymously transmit
for 1 hour and be sure that no more than 25 nodes will
fail statistically. Evaluations on Herbivore with clique sizes
ranging from 10 to 40 show that the bandwidth utilization
is linear with increasing clique sizes. Herbivore was the first
approach of implementing the DC-net protocol in reality.

However, to my knowledge, there is no further development
on the implementation since the initial papers [9,17] and no
source code is available.

2.1.2 Dissent
Dissent 3 is another implementation first presented by Corrigan-
Gibbs and Ford in 2010 in [5] and later improved in [6, 22].
Dissent is built upon Verifiable Shuffles and the DC-net pro-

Figure 3: The client-server architecture of Dissent.
Clients communicate directly and share keys only
with servers. Adapted from [22].

tocol. However, instead of the complete decentral approach
of the DC-net described in [4], Dissent is uses a client-server
architecture, where each client node only shares keys with
the servers, but not with other clients (see figure 3. The

Figure 4: Dissent’s scheduling mechanism, realized
with a verifiable shuffle. Adapted from [22].

communication in Dissident consists of the following phases:
Each client creates a new secret pseudonym key k and sends
it encrypted to a server, which creates a secret permutation
(that is, no-one else can see the positions of other clients)
of all keys received by the clients, decrypts the keys an as-
signs a (secret) slot to every node. With a known scheduling
function, each client can determine the slots assigned to it
(depicted in figure 4). Each client creates a message with
zeroes in all position except the slots she was assigned. In

3http://dedis.cs.yale.edu/dissent/



those slots she can put its message. Afterwards, the client
creates pseudo-random strings from the secret keys the client
shares with every server and combines those strings with
XOR. Each client sends his output to at least one server.
Afterwards, each server collects the messages from the last
step. Contrary to the original DC-net protocol, there’s a
fixed deadline - clients who send their messages to late or
don’t send anything at all, are left out in this round. The
server synchronizes the received messages from each other
(redundant messages from the same client can be recognized
and trimmed through the pseudonym keys). The server now
continue with the protocol only if the number of participat-
ing clients in this round are above a certain threshold (to not
threaten the anonymity of the clients sending in this round).
Each clients receives the final output of this round, which is
signed by every server. After verifying the signatures, the
client can extract the message from this round. Each node
in Dissent shares secrets with each server. Malicious server
can therefore not partition the key share graph and thus the
anonymity set (as described in [4]). Therefore, if there is at
least one honest server, the anonymity of a client can’t be
compromised easily. The client doesn’t even have to know
which one of the servers need to be the honest server, which
they call the ”anytrust-model”.

A significant difference to the communication in a Herbi-
vore subgroup is, that nodes don’t communicate directly to
each other. In Herbivore, each node of subgroup alternat-
ing forms the center of star and is responsible to redirect
every message of the other nodes. Hence, the latency and
bandwidth of a single node can be a bottle-neck and reduce
the overall performance of the local group. The decision
to choose a fixed receiving window in Dissident tackles this
problem, by simply ignoring clients that are too late. In the
traditional DC-net, this would not be possible, as the global
result relies that every participant in this round committed
its message. The possibility, that attackers could misuse this
behaviour to DoS clients and try to isolate single clients cur-
rently sending, is circumvented by adding a threshold for a
minimum number of participating clients in single rounds.

Look at the Source Code of Dissent.
Fortunately, the authors made their implementation of Dis-
sent open source 4. together with a good documentation 5 of
the specific components. Dissent is implemented in the C++

language with the QT-Framework. In practice, normal TCP
traffic can be tunneled through the SOCKS server provided
by Dissent and therefore normal application level protocol
can transparently use the DC-net implementation.

3. INTERNET OF THINGS
The last section presented the DC-net protocol with man-
ifold improvements and two implementations. This section
starts with a short overview of the state of the art of privacy
enhancing technologies in the Internet of Things. Internet
of Things environments differ significantly from traditional
network environments: Wireless Sensor Networks contain-

4https://github.com/dedis/Dissent, last visited on
12/17/2016
5https://github.com/dedis/Dissent/blob/master/DESIGN,
last visited on 12/17/2016

ing constrained sensor nodes have different characteristics
compared to ”traditional” network environments like PCs
connected through the Internet. These differences will be
explained and the specific challenges for a DC-net in an IoT
environment will be outlined. Based on the insights gained
from the last section, a DC-net protocol and communica-
tion network suited for a WSN will be developed and imple-
mented as a proof-of-concept. The resulting implementation
will be evaluated and the general applicability of DC-nets on
constrained devices in an IoT scenario will be discussed.

3.1 Constrained environments
The Internet of Things is becoming reality: ”smart” sensors
and actors are all around us in our homes, public buildings,
cities, cars, factories etc. Those ”things” are often lower
power and low cost hardware, embedded - often invisibly - in
sensor network environments and communicating wirelessly.
They differ from traditional PCs and laptops in several as-
pects: equipped with energy-efficient, but less powerful mi-
crocontrollers, little memory capacity and they are running
on battery or low-power energy supplies like solar panels.
Encryption, Origin Authentication and other security mech-
anisms come at a cost - costs that often have little impact on
powerful hardware equipped with modern CPUs and giga-
bytes of RAM. However, for constrained devices, this over-
head can have a dramatic impact on the overall performance
and battery life and may at worst lead to security techniques
getting neglected instead.

3.2 IoT Scenario
In this paper, a Smart Home scenario is used for embedding
the DC-net implementation. The characteristics of such a
scenario - compared to hosts communicating over the Inter-
net - are constrained, wireless devices installed in a house.
Those devices can be sensors, like a door or window sensor,
a temperature sensor or a smoke sensor. The data collected
from those sensor is then transmitted wirelessly, processed
and decisions are made upon it. For example, the door con-
trol sensor registers a new person entering the house, informs
the other nodes and the light actor switches on the lights, or
the heating turns on. While those scenario seem harmless
at the first point, interesting information can be gathered
through long term eavesdropping: the habits of the individ-
ual residents, the time periods where they are at home or not
and so on. Encryption protects the content of the messages
exchanged, but it can’t hide the sheer fact, that communi-
cation has happened. Now, an attacker eavesdropping over
a longer period can learn various patterns in communication
and may be able to correlate certain events: e.g. if the light
actors didn’t get any messages in the morning, this may in-
dicate, that no person is currently in the house. Or every
time the door control sends a message can be correlated to
residents leaving the house and so on. Message encryption
alone can’t hide the communication patterns and the meta-
data. DC-nets however can hide meta-data of this kind: if
nodes are continuously sending and receiving, the attacker
doesn’t learn anything from this ”noise” and thus may not
be able anymore to gain more knowledge.

3.3 IoT Stack
A typical IoT protocol stack may consist of a RESTful inter-
face on top of the CoAP [16] protocol, which can be informal



described as a compressed version of HTTP for constrained
devices. CoAP is used on top of the unreliable but more
lightweight (compared to TCP) UDP protocol. On the net-
work layer, IPv6 is typically used with the 6LoWPAN adaption
layer, which adapts IPv6 for the needs for constrained sen-
sor environments (e.g. fragmentation on the network layer is
avoided and carried through upper layers for less complexity
for the sensing nodes) [11, 14]. Finally, on layer 1 and 2 for
WSN, the IEEE 802.15.4 low-power radio interface is used,
which is an important wireless protocol used in the IoT.

In order to realize confidentiality, end-to-end encryption can
be achieved by Datagram Transport Layer Security (DTLS) [15].
Strong origin authentication through digital signatures is
feasible with tolerable overhead through Elliptic Curve Dig-
ital Signature Algorithms (ECDSA) [1, 13]. However, to my
knowledge there are currently no specifications or implemen-
tations available that try to bring unobservable communica-
tion to wireless sensor networks.

3.4 Communication costs
Chaum [4] proposed a ring topology, where every node is re-
ceiving the message from its neighbor and in order to reduce
bandwidth combines his local output directly to the message
received. For one DC-net communication round, the mes-
sage has to travel twice through the ring: the first time is
used to get all local outputs from participating nodes (send-
ing) and the second one for broadcasting the final, global
message to every node (receiving).

In Herbivore [9] the local subgroups who are actually per-
forming the DC-net protocol, are organized in a star topol-
ogy. Every node is forming the center of the star in new
rounds in an alternating way. Note, that while the commu-
nication is done in a star, every participant shares secrets
with every other node, that is the key graph is a fully con-
nected graph. The downside of this architecture in network
with n nodes is that a node with low bandwidth and high
latency acting as the star in a round has to receive n − 1,
combine those results (it doesn’t have to, but this decreases
the bandwidth requirements) and send then the message to
n−1 nodes. In a WSN this leads to a high load that a single
node has to process and could further increase the latency.

The topology in Dissent differs quite significantly: instead
of a decentral architecture, Dissent uses a client-server ar-
chitecture [5, 22]. Communication always happens among
client-server and server-server, but never among two clients
directly. Also the key graph differs from the full connected
graph in the Herbivore net or in the ring topology: clients
share only secrets with the servers, but not with other clients.
This design of Dissent has a big advantage: it allows for one
communication round to left out clients that were leaving
the network or clients that are too ”slow” (in the current
communication round). Compared to Herbivore or a ring
topology, where the slowest client determines the latency
and bandwidth characteristics, Dissent increases the perfor-
mance and scalability (the consequence for the anonymity
through this practice are considered through thresholds, i.e.
for a communication round, a minimum number clients have
to participate, see Section 2).

Wireless networks, however, have one big advantage in terms

of topology: broadcasts can be done ”naturally” over the
physical medium and therefore are ”cheaper” in terms of
communication overhead. Assuming, every node reaches
all other nodes wirelessly, a broadcast message reaches all
other nodes without further interaction like forwarding etc.
required (such a fully connected network can be achieved
through current radio technologies, at least in environments
like a single house). The decoupling between the global mes-
sage and the clients that Dissent provides, can be hardly
realized in a pure decentral, fully connected network graph:
if a single node doesn’t broadcast his local message in a
given round, the local output of his neighbors (that is all
other nodes in the network) depends on it and therefore the
global sum of this round can’t be calculated.

The first aspect is important to determine which load one
single, constrained node device has to cope with. The second
aspect indicates the bandwidth and latency requirements
that a low-power and lossy network like a wireless sensor
network has to offer. Assuming a DC-net with n nodes,
with a fully connected key graph, the calculations are done
over n rounds of communication. In the ring topology, every
node receives the temporary global sum from its predecessor,
combines its output and forwards this message. After the
temporary global sum has travelled once through the ring
and every participant has committed his part, the global
sum has again travel through the ring in order to get received
by every node. The number of sending and receiving steps
after n rounds for one node are thus 2n for each. In the
star topology, for (n− 1) rounds, one node has only to send
his local message and receive the final global sum. But in
the round where it has to form the center, it has to receive
n− 1 and also send n− 1 message which sums up to 2n− 2
sending and receiving steps for each. In the fully connected
wireless network, every node has a constant sending and
receiving rate in every rounds, yielding in n sending steps
and n · (n− 1) = n2 − n receiving steps in total.

Assuming there is only one communication round happen-
ing in the ring, only one message travels through it. The
load on the ring is thus constant, however, with increasing
number of nodes, the number of hops is increasing linearly
and so does the latency. In the star topology, every client
sends his message to the star and the star sends the accumu-
lated message back again yielding in (n−1)2 total messages
exchanged in one round and though quadratic costs. For
the fully connected, wireless network, exactly n message are
exchanged in total in one round.

Summarizing the costs for individual clients for n rounds,
the star topology seems to win, however with the downside,
that every single node has to cope with the round where it
has to build the star center. Nodes in the fully connected
network have a constant sending rate of one message per
round independent from the network size, must however re-
ceive n messages. The receiving costs are thus increasing
linearly with the size of clients. The total number of mes-
sages exchanged in the fully connected network and the ring
are linear with the number, whereas the costs are quadratic
in the star.

3.5 Attacker Model



The attacker model for this scenario is a global attacker,
however, who is bound computationally, that is an attacker
who can listen to every communication (this is very realistic
in a locally limited, wireless scenario) and who can insert
arbitrary messages (same here). However, Denial of Ser-
vice attacks through radio jamming are not considered in
this paper. Given an attacker with a powerful enough ra-
dio equipment, jamming the whole radio frequencies used
by the sensor nodes, there is hardly any possibility to pre-
vent this kind of attack. Dissent considers these types of
attack through defining thresholds of a minimum number
nodes who have to participate in a given round, otherwise
the round is aborted by the servers (or the receiving win-
dows is increased). Unfortunately, this is much more com-
plicated to realize in a decentral DC-net, because each node
participating in a given communication round doesn’t know
beforehand, how much nodes will (or can) participate. If an
attacker therefore is able to simultaneously prevent all other
nodes from sending - except the victim node - it is possible
to isolate it by effectively reducing its anonymity set to 1.
Since a wireless sensor network like in a Smart Home is
bound geographically to a specific location, special care has

3.6 DC-net architecture and communication

protocol
In the following paragraphs, the steps forming the basic DC-
net protocol implemented here will be presented.

Entry protocol.
As mentioned, there should be an entry burden for newly
connecting nodes to reduce the risk of Sybil attacks [9].. For
attacker nodes who are already in the DC-net this adds a
penalty if they get detected and kicked out of the DC-net,
since reconnecting (maybe with another identity) is more
costly. This is especially important, because in many IoT/
WSN environments such as Smart Cities, attackers can’t
be easily removed physically (or even located). Each new
node that enters the network has to establish secrets with all
other node. This can be done through Diffie-Hellman key ex-
change. Diffie-Hellman through key exchange through ellip-
tic curves (ECDH) can be done efficiently with the MicroECC

library. The entry protocol is currently not implemented
in the proof-of-concept implementation. In the prototype,
there are currently only two RE-Mote nodes with hardcoded
shared-secrets.

Communication.
In contrast to the original DC-net, two important optimiza-
tions for the message exchange were implemented. Instead
of sending 1 Bit messages in every message round, messages
with bigger payloads get exchanged. This allows it for the
receiver to spend less effort on putting together the individ-
ual messages from the clients. A message round is a single
round, where each participant commits the combination of
its shared secrets and where one single client sends its ”ac-
tual” communication payload. For sake of clarity, the term
”active sending” for a client means the client actual sends in-
formation it wants to communicate where ”passive sending”
refers to taking part in a message round (i.e. committing
the combination of the secrets) but setting the own payload

to 0.

The prototype doesn’t utilize a TCP nor UDP stack. In-
stead it builds upon the RIME stack which is a network
stack of Contiki with very low overhead. RIME itself offers
different layers with certain services, but the prototype uses
the only the ”anonymous broadcast” layer which offers only
the service of sending broadcasts. This RIME layer builds
directly upon the 802.15.4 which allows only to send at most
127 Bytes. Therefore it increases the efficiency in terms of
energy consumption and overhead to utilize the packets as
good as possible. Instead of transporting only one message
round per packet (i.e. 1 Bit) multiple message rounds are
carried in only one broadcast packet in the ”sending vector”.
The prototype currently uses for message rounds per packet,
but this is a rather arbitrary number that needs optimiza-
tions in the future.

In every message round, every participant commits his lo-
cal message: the combination of its shared secrets together
with its payload. But instead of the initial DC-net pro-
tocol with single bits and the XOR operation, an abelic
group g modulo a prime p is used (see section, 2, improve-
ments by Waidner and Pfitzmann [20, 21]). For this first
proof-of-concept I decided to choose 8 Byte for the mes-
sage size. The biggest prime that can be expressed in 8
Bytes is 18446744073709551557. Rounded down to 7 Bytes,
every message payload with 7 Bytes can be encoded as a
number n with n ∈ G(N/18446744073709551557N,+). An
abelic group modulo a prime was chosen as it allows to
easily calculate the inverse of a number n: n−1 = p − n.
Now, considering two participants A and B with the shared
secret s ∈ G(N/pN,+) and A active sending the number
n = 42 ∈ G, the global sum is calculated as follows:

(LocalA + LocalB) mod p

= ((s+ n) + (s−1+) mod p

= (s+ s−1 + 0 + n) mod p

= n

(4)

Reservation Phase.
The reservation is done with the reservation map technique
described in [20], based on superposed sending (see section
2) and with the same abelic group described above. Each
client who wants to send messages, randomly chooses posi-
tions in the reservation vector and indicates this by setting
the specific positions to 1. All other positions are set to
0. Nodes that don’t want to send messages, send an empty
reservation vector with zeros in all positions. Afterwards,
every node applies its shared secrets to all slots. Each client
broadcasts this vector through the network and receives the
reservation vectors from all other clients. After every client
has received all reservation vectors, it sums the vectors com-
ponent wise together. Afterwards, positions in the vector
with value 0 mean: no reservation, positions with value 1
mean: successful reservation of exactly one node and posi-
tions with value > 1 indicate a collision. The reservation
vector consists of a single magic byte at the beginning indi-
cating that this is a reservation vector and four 8 Byte slots
containing the reservation number.



Transmission Phase.
In the transmission phase each, every node prepares its vec-
tors: 0s and the applied shared secrets in the passive sending
slots and n and the applied shared secrets for the active send-
ing slot (if any slot was reserved successfully) with n being
the payload encoded as a group number. The transmission
vector is of equal size as the reservation vector with a dif-
ferent magic byte at the beginning. The nodes send their
transmission vector and receive all vectors from the others,
combine the vectors and are finally able to see the payloads
in each slot for each message round.

If a node wants to leave the network, it is important to have
an signaling mechanisms such the other nodes are informed
and the computation of the global sum doesn’t rely on the
local result from the leaving node. Such an ”Exit phase” is
currently not implemented in the prototype.

3.7 Implementation details
The implementation is done on a Zolertia RE-Mote [23], a
wireless sensor device equipped with the CC2538, a ARM
Cortex M3 SOC from Texas Instruments with 32MHz, 512KB
flash and 32KB RAM [19]. The CC2538 chip further in-
corporates a hardware acceleration unit for SHA2 hashing,
AES encryption and Elliptic Curve Cryptography. The RE-
Mote has two radio interfaces: the CC2538 is capable of run-
ning on the 2.4GHz IEEE 802.15.4 band and a additional TI
CC1200 which is running on 868 or 915MHz for long-range
distances 6

The Contiki operating system (OS) [7] is used as the funda-
ment for this implementation. Contiki is open source, writ-
ten in platform-independent C and in active development.
Contiki is providing a rich set of standard protocols (CoAP,
UDP, TCP, IPv6 etc.) while still being as lightweight as
possible and therefor an ideal basis for Internet of Things
applications.
The pseudo-random number generator that is used for gener-
ating the shared secrets for each message round is currently a
hardware-accelerated implementation of the SHA256 func-
tion where only the first 7 Bytes are extracted (to fit into
the abelic group).

3.8 Evaluation
The main contribution of this paper is to show that building
a basic DC-net in an IoT environment is actual possible.
However, for a broad evaluation, the remaining pieces such
as the key exchange, the entry phase and the exit phase have
to be implemented and the implementation has to be tested
on more than two devices.

The evaluation in this section therefore focuses on the over-
head of the implementation for the individual /textitRE-
Mote devices. Whilst the implementation is not yet opti-
mized on efficiency, a look on the code size overhead and
the required timings gives an indicator for costs of an DC-
net on constrained devices.

The size of the implementation is done through measuring
the difference between an plain Contiki firmware image and

6maximum range up to 20km, see https://github.
com/Zolertia/Resources/wiki/RE-Mote (last visited
12/17/2016)

Table 1: Code size overhead in Byte of the proto-
type implementation. Measured with the size tool
provided by the gcc-arm toolchain.

firmware text data bss total

Contiki 19993 228 5457 25678

Contiki + DC-net 23296 252 5675 29223

overhead 3303 24 218 3545

the DC-net implementation plus the Contiki image. The
size was measured with the size tool after using the strip

tool, both provided by the gcc-arm toolchain. The results
are listed in table 1.

The network communication was analyzed with the sensniff

tool provided by Contiki, which was flashed on a third RE-

Mote. The sniffed packets got serialized read in by the sen-

sniff 7 Python script and then encoded in a .pcpap file.
This method allowed to directly sniff the 802.15.4 packets
sent through the air, rather than using a 802.15.4 border
router.

Figure 5: Analyzing the captured traffic between
two RE-Motes with Wireshark. Red is the magic
byte (here: reservation), blue are the four vectors,
green is the vector in the third slot).

A sample capture is depicted in image 5 8.

4. CONCLUSION AND FUTURE WORK
In this paper, the application of the DC-net protocol on
constrained devices in a Internet of Things environment was
examined. DC-net is a powerful communication protocol
that allows for unobservable communication in decentral
network. There is a need for such privacy enhancing tech-
nologies, especially in the Internet of Things, where a plethora

7 https://github.com/g-oikonomou/sensniff.git
8 Note that the group number’s modulus are currently car-
ried out with the packet. Since they are all the same, they
will be refactored out in a new version.

https://github.com/Zolertia/Resources/wiki/RE-Mote
https://github.com/Zolertia/Resources/wiki/RE-Mote
https://github.com/g-oikonomou/sensniff.git


of sensors are collecting data all the time and everywhere.
Encryption alone doesn’t prevent attackers from collecting
meta-data and communication patterns that can reveal pri-
vacy related informations. Current technologies like TOR
offer a much lower level of anonymity, compared to the DC-
net and are not intended for the application on low-level
hardware like microcontrollers. Hence, this paper brings the
DC-net protocol onto a constrained, microcontroller-based
device, the RE-Mote. Together with some of the improve-
ments that have been made on the original DC-net since
its presentation, a proof-of-concept implementation was de-
veloped and tested. Whilst this proof-of-concept implemen-
tation is not a ready-for-production solution, it shows, that
various problems from working in a constrained environment
can be mitigated and some characteristics, like the cheap,
physical broadcast over the air can be exploited. There is
a lot of room for future work, such as the optimization of
the different communication parameters, like slot size and
message size, the timing of the broadcasts and the imple-
mentation of a reliable, but still lightweight approach for
detecting disrupters and attackers. Privacy enhancing tech-
nologies like the DC-net are worth to be considered and
definitely needed for the Internet of Things and the implied
dangers for the privacy of everyone.
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