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Abstract. This paper documents some experiences and lessons learned
during the development of an IoT security application for the EU-funded
project RERUM. The application provides sensor data with end-to-end
integrity protection through elliptic curve digital signatures (ECDSA).
Here, our focus is on the cost in terms of hardware, runtime and power-
consumption in a real-world trials scenario. We show that providing
signed sensor data has little impact on the overall power consumption.
We present the experiences that we made with di↵erent ECDSA imple-
mentations. Hardware accelerated signing can further reduce the costs
in terms of runtime, however, the di↵erences were not significant. The
relevant aspect in terms of hardware is memory: experiences made with
MSP430 and ARM Cortex M3 based hardware platforms revealed that
the limiting factor is RAM capacity. Our experiences made during the
trials show that problems typical for low-power and lossy networks can
be addressed by the chosen network stack of CoAP, UDP, 6LoWPAN and
802.15.4; while still being lightweight enough to drive the application on
the constrained devices investigated.

1 Introduction

The Internet-of-Things will generate a plethora of communication messages, that
are stored, forwarded and used by higher applications to make decisions. To pro-
vide adequate protection in case of a cyber attack, strong security mechanisms
must be in place and enabled at an early stage. Here we focus on integrity pro-
tection and strong authentication through digital signatures. We aim to push
security mechanisms towards the edge of the IoT, ideally running on ‘things’ it-
self, i.e. on constrained devices. In this paper, we share the lessons learned within
the European and national research projects we participated in3. The RERUM
framework [1] allows to build IoT applications while considering security and
privacy mechanisms early in their design phase.

3 EU-funded project RERUM ict-rerum.eu (last accessed 03 Oct 2016)
BMBF-funded project FORSEC bayforsec.de (last accessed 03 Oct 2016)

This is a preprint. The final version of this paper will appear in the proceedings of the 
18th International Conference on Information and Communications Security (ICICS2016).
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Attacks we address and mitigate concern the manipulation of IoT data in
transit and the spoofing of an authorised message origin. Digital signature’s of-
fering of strong origin authentication primarily protects against attackers insert-
ing messages into the IoT. Inserted messages can have unwanted consequences,
like sending an ‘open window’ command or falsifying a ‘lock door’ command.
Integrity protection paired with the knowledge of the sensor-data source, allows
us to make better decisions on the reputation of data based on its authenticated
origin.

All in all integrity alone would help against malicious tampering and could
be achieved by symmetric MACs, but only with digital signatures we also reach
strong authentication of the data’s or command’s source. By this the IoT’s last
mile is not any more the weakest link, but the attacker must now be able to
compromise back-ends and control systems, which we already have good defence
mechanisms for. Thus, showing that we can put ECDSA on things in practice
proves that another important information security goal [2] for protection in
depth against cyber attacks in the IoT is possible.

2 Background information

In the EU-funded project RERUM we developed a framework which enables IoT
applications to consider security and privacy mechanisms early in their design
phase. One of the goals of RERUM is to provide end-to-end integrity protection
down to the wireless sensor network. Part of this framework is an application
that runs on constrained devices and provides ECDSA signed sensor data using
standard IoT protocols. This paper presents the experiences and lessons learned
during development and testing of the signing application. We described early
results that present the overhead of signatures in terms of runtime, memory,
energy consumption and communication in [3], with energy overhead being the
focus. Here we discuss the practical impact of signatures by showing how long the
sensor device used in the trials can actually work running on battery. This paper
extends previous findings by adding new measurements we did using a hardware
accelerated ECDSA implementation. We also examine the impact of problems
like an unreliable network connection, a typical aspect of low-power and lossy
networks, and complement a number of considerations done previously [1,4,3].

2.1 Hardware platform

For the proof-of-concept implementation of ECDSA integrity protection, we ini-
tially used the Z1 platform4 [5]. It is based on a MSP430 16bit RISC CPU
with 8KB RAM, approximately 60KB (usable) flash memory, and the CC2420,
a 2.4GHz IEEE 802.15.4 [6,7,8] compliant RF transceiver.

Later we switched hardware platform to a Zolertia RE-Mote5 [9]. The RE-
Mote incorporates the CC2538 Cortex-M3 SOC from Texas Instruments with

4
zolertia.io/product/hardware/z1-platform (last accessed 02 Oct 2016)

5
zolertia.io/product/hardware/re-mote (last accessed 02 Oct 2016)
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32MHz, 512KB flash and 32KB RAM6 [10]. The CC2538 contains a hardware
crypto engine that accelerates cryptographic operations like SHA2, AES and
ECC. The RE-Mote did run Contiki7 [11], a lightweight operating system de-
signed with Internet-of-Things, and the restrictions and needs of constrained
devices in mind. We used the RE-Mote hardware platform during all trials and
all measurements, and explanations in this paper are based on it, unless explicitly
stated otherwise.

2.2 JSS and signed CoAP message

JSON Sensor Signatures (JSS) is a valid JSON format that contains additional
meta-data about the embedded signature and the algorithm applied. It is an
encoding scheme that transports the digital signature and its meta data alongside
the JSON data [4]. This enables to keep the plain information accessible to all
involved processes that can handle JSON. By this the signature can remain
attached for end-to-end protection as long as JSON data can be stored. This is
the case for a number of IoT storage backends, like Couchbase or MongoDB.

In IoT terminology the device will expose its sensed data as resources. Here,
following IoT-A 8 and RERUM terminology [12], the device’s resources can be
accessed via a RESTful interface [13] and return data in the JSON format.
The resources can be requested in two representations: unsigned with the Con-
strained Application Protocol (CoAP) content-format application/json and
signed with a newly introduced content-format application/jss.

{
"jss.protected": 
{

"alg": "ES192"
},
"amb_temp": 20965,
"measurement_id": 21,
"jss.signature": "le4uz7vWD_z•••WL"

}

Fig. 1. Sample JSS message. Omitted characters are indicated with dots (•••). White-
space is added for better readability. The framed message parts are the JSS related
additions. Note that unsigned messages contain only the sensor value itself.

While application/jss is no o�cial standard mime-type, this design deci-
sion was made to maintain backwards compatibility to clients that aren’t capable
of handling signatures. The sample JSS message depicted in Fig. 1 shows its in-
ternal structure: a header section (jss.protected) describing the ECC-based
signature scheme [14], a field measurement id, and the signature itself, encoded

6
ti.com/product/cc2538 (last accessed 02 Oct 2016)

7
contiki-os.org (last accessed 02 Oct 2016)

8
iot-a.eu/public/terminology (last accessed 02 Oct 2016)
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in BASE64URL [15] (jss.signature). The payload itself was hashed with SHA-
256 [16] and then signed with secp192r1 (indicated by ES1929).

We build the signature itself following the steps we suggested in [4]:

1. clean JSON keys that are part of payload (i.e. not part of signature metadata;
clean = remove non-alphanumerical characters)

2. sort key-value pairs of previous step alphanumerically
3. encode measurement id in BASE64URL
4. encode payload in BASE64URL
5. concatenate encoded measurement id and payload with dot character (‘.’)
6. build SHA-256 hash of concatenated string
7. sign hash generated
8. encode signature in BASE64URL

For verifying a received JSS message, the first five steps are performed to
generate the hash. Then the received BASE64URL encoded signature is decoded
and fed together with the hash and public key to the verification function.

The JSS field measurement id was introduced for signed JSS messages to
protect against replay attacks. In replay attacks a potential attacker could sni↵
packets and replay them later. The client has no means to distinguish between
the valid messages and the replayed ones, as the replayed packets do contain
valid signatures.

The measurement id gets incremented after each measurement (here every
30 seconds). These are used for generating the signature and a client can use
them to detect previous measurements. Of course, this protects against replay
attacks only, if the measurement ids are not repeating.

For reducing the overhead, we use a 32bit unsigned integer for storing the
measurement id, allowing for 232 = 4, 294, 967, 295 messages with di↵erent mea-
surement ids. We consider this as safe, as with a typical sensing interval of 30 sec-
onds, it would take more than 4.000 thousand years for one measurement id to
repeat. Furthermore, possible restarts or crashes of the sensing device due to up-
dates, power issues, battery changes that lead to resetting of the measurement id
counter to zero have to be considered. To circumvent this, the measurement id
should additionally be stored on a non-volatile memory, like the internal flash.

3 ECDSA signatures implementation

For the proof-of-concept implementation, we used a reference implementation
from NIST10 together with the p160 curve on the Zolertia Z1. It revealed, that
the Z1s capabilities are too restricted to provide security on an adequate level
(�192bit curve size [17]): while runtime performance proved fine, the RAM and
flash memory sizes were too limited [4]. Our Performance and overhead measure-
ments [3] revealed MicroECC [18] to be a well suited ECDSA implementation.

9 RFC7518 [14] actually does not provide an identifier for SHA-256 hashing in combi-
nation with secp192r1 signing. However, it does for SHA-256 hashing in combination
with P-256 signing (ES256). Therefore we use ES192 analogue to this convention.

10
github.com/nist-emntg/ecc-light-certificate (last accessed 02 Oct 2016)
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3.1 Implementation details

The RERUM sensing application consists of multiple parts:

1. Implementation of sensing routines for several internal and external sensors
(e.g. ambient temperature, humidity, noise, and various analogue sensors).

2. ECDSA signature generation with MicroECC.
3. Encoding and formatting of sensed value with JSS.
4. Exposing resources, i.e. signed sensor data through a standards compliant

RESTful CoAP interface.

MicroECC was adapted to the needs of our use case as follows: To gener-
ate SHA-256 hashes, we used the CC2538’s hardware acceleration engine. The
CC2538 random number generator delivers the nonce11 required for the signing
process. We configured MicroECC to use the optional in-line assembly optimisa-
tions (here referred as ASM fast). In order to encode the signatures, we extended
a BASE64 implementation to support BASE64URL compliant encoding.

Contiki ships with various integrated applications like the IPv6 network stack
and application layer protocols. This simplified the implementation of signatures
significantly, since it allowed increasing the focus on signature generation and
encoding rather than on the network stack. That’s why all network related li-
braries were taken directly from Contiki like CoAP, the REST implementation,
and the lower layer implementations as well (like UDP, IPv6, and 6LoWPAN).
Contiki’s CoAP implementation was extended by a monitor concept that en-
capsulated the resource representation, exchange and signature generation and
allows to easily add new sensors without rewriting network specific operations.

This approach permitted us to reduce code complexity and maintainability,
and as well simplified the integration of di↵erent external sensors.

3.2 Hardware acceleration

We compared di↵erent ECC signature libraries in terms of runtime overhead,
firmware size and energy consumption on the RE-Mote hardware [3]. Among
those examined libraries is MicroECC [18], a library implementing the standard
NIST curves secp160r1, secp192r1, secp224r1, secp256k1 and secp256r112.
MicroECC is a platform-independent ECC implementation written in C that
was especially designed with constrained devices in mind. It has a small code
footprint, does not require dynamic memory allocation, and runs on 8-, 32-, and
64bit CPUs. To increase performance, MicroECC can be optionally configured
to use in-line assembler for the AVR, ARM, and Thumb platforms in two modes
with speed vs. code size optimisations: ASM small (little code size overhead) and
ASM fast (optimised on speed, but with more code size overhead). Since mea-
surements showed acceptable performance of MicroECC, we selected its ECDSA
library for further development.

11 nonce: arbitrary number only used once
12

github.com/kmackay/micro-ecc (last accessed 02 Oct 2016)
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We presented the MicroECC runtime overhead in relation to the di↵erent
ECC curves and assembly optimisations [3]. This paper extends those results by
new measurements that contemplate the impact of hardware acceleration.

In this section, we present the runtime of a single hashing and signing step
with the di↵erent implementations. To avoid any influences that could distort
the results, i.e. hardware interrupts, the firmware images flashed on the RE-
Motes contain only the necessary parts to perform the measured operations; the
Contiki network stack was disabled.

For encoding the signatures, we improved a plain C implementation of the
BASE64 encoding scheme in order to support BASE64URL compliant encoding.
The message bu↵er that gets signed depends only on the signature size, i.e. the
size of the ECC curve. The runtime overhead of BASE64URL encoding either
for secp192r1 (signature with 48bytes) or secp256r1 (signatures with 64bytes)
is negligible with both less than 1ms. Thus we did not further examine this step,
since it has little impact on the signing process.

The RE-Mote’s CC2538 features a hardware encryption engine that is ca-
pable of accelerating the generation of SHA2 hashes. The RERUM application
already uses this feature for hashing the message payload prior getting signed;
where the message that gets hashed is between 30 and 50 characters long (de-
pends on the measurement id and resource identifier).

Table 1. Runtime overhead of SHA256: 39bytes refers to a typical JSS payload (here:
amb temp for ambient temperature resource); the 1024bytes where randomly chosen.

size [byte] un-accelerated [ms] accelerated [ms]

39 0.669 0.059

1024 5.834 0.471

The results are shown in Table 1: Hashing 39bytes, a typical payload length
within the RERUM application, has an negligible overhead of less than 1ms.
However, the values of hardware accelerated hashing compared to the un-accel-
erated ones indicate a speed-up by a factor of approximately eleven. We verified
the factor in another measurement by randomly chosen 1024bytes bu↵ers to
exclude any inaccuracies that could come from the timer at such small intervals.
These measurements show a similar di↵erence: while the plain C implementation
needs ⇠5ms for hashing, the accelerated one does not even need half a millisecond
leading to a performance boost by a factor of approximately twelve.

Besides the hardware acceleration for SHA2 hashes, the RE-Mote’s CC2538
features also a ECC hardware acceleration engine. Fortunately Contiki contains
a ECC implementation (secp192r1 and secp256r1) that utilizes hardware ac-
celeration since October 2015. Table 2 shows the results: the measurements for
un-accelerated, ASM small and ASM fast signing with MicroECC were taken
from [3] and extended by the results from the hardware accelerated implemen-
tation. While the in-line assembly optimisations ASM small reduces the runtime
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Table 2. Runtime for signing and verifying with secp256r1 curves; un-accelerated,
ASM small and ASM fast refer to MicroECC measurements we presented in [3] .

configuration un-accelerated ASM small ASM fast accelerated

secp256r1 sign [ms] 1177 855 537 341

secp256r1 sign [%] 100 72.6 45.6 29

secp256r1 verify [ms] 1320 957 595 697

secp256r1 verify [%] 100 72.5 45 52.8

for signing about a quarter and ASM fast even more than a half, hardware ac-
celeration reduces the runtime about almost three-quarters. Surprisingly, for the
verification MicroECC with ASM fast beats the hardware accelerated implemen-
tation. Currently, we can’t explain this behaviour.

We note that the hardware accelerated implementation leaves it up to the
user of this library to choose the random nonce used for signing. It is important
to be aware of the fact that using the same nonce more than once [19] or relying
on a bad random number generator [20] o↵ers attackers the possibility to extract
the private key used for signing. MicroECC instead keeps care of choosing and
processing this random number correctly and furthermore considers possible side
channel attacks [21].

Table 3. Signing and verifying runtimes for TweetNaCl Ed25519 implementation.

configuration un-accelerated [ms]

Ed25519 sign 3332.9

Ed25519 verify 6646.9

To compare the results of Table 2, we used the Ed25519 curve implementation
of the TweetNaCl [22] library13. This implementation is quite compact14, but not
optimised for speed. Signing and verifying takes with roughly 3.3 and 6.6 seconds
significantly longer than with the secp256r1 curve implementations described
previously.

Unfortunately, like MicroECC’s secp256r1, Ed25519’s RAM requirements
are too high in order to fit in the RERUM application. Even with further opti-
misations, we did not succeed to use TweetNaCl’s Ed25519 curve alongside with
the CoAP interface, the sensor library, and the other routines required.

13
tweetnacl.cr.yp.to

14 TweetNaCl fits into 100 Twitter Tweets.
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3.3 Challenges overcome

The runtime overhead of generating signatures is smaller than expected, however,
a lot of signing operations within a short period can reduce the availability and
responsiveness for clients issuing requests. This increases also the danger for easy
Denial-of-Service attacks for attackers flooding one sensing RE-Mote with too
many requests. For this reason we decided not to sense and sign new sensor
values for every incoming request. Instead, sensing and signing takes place once
within a configurable interval down to five seconds.

The RE-Mote made it possible to implement the use-case, unlike the Z1
which was too constrained. However also the RE-Mote’s RAM size was limiting:
Signing with secp256r1 together with the described network stack and the JSS
format caused stack overflows during runtime. Attempts to circumvent this by
increasing the stack was not helping.

Therefore we decided to use secp192r1. It has 80 minimum bits of secu-
rity [23] and is still considered as an adequate security level with an equivalent
symmetric key size of 96bits [17]. Also the RAM limits the number of resources
that can get provided with signatures to approximately five. The reason is that
for each signed resource we pre-allocate memory for the bu↵ers to store the last
signed value in order to be able to respond to queries quickly. In practice this
restriction is mitigated as we implemented the application in such a way that is
easy to configure signing on a per-resource basis during build time. This fulfils
the di↵erent needs for di↵erent use-cases and sensors while the code can be still
developed centrally from one consistent code base.

4 Trial scenario

Our trial scenario was placed in Heraklion, Greece: RE-Motes together with
attached sensors were installed. They measured and provided resources like am-
bient temperature and ambient humidity.

4.1 Network architecture and components

For the trials, we used a 3-tier network architecture, as shown in Fig. 2, consist-
ing of a RERUM device, RERUM gateway, and RERUM middleware. RERUM
devices are our wireless RE-Motes that we use for sensing the environment. Each
RE-Mote carries several sensors that collect data like ambient temperature and
humidity, noise, light, etc. Each distinct type of sensory data is made available
through a CoAP resource.

The RERUM gateway has several roles. First, it interconnects the devices
through an 802.15.4 wireless sensor network by initiating the RPL [24] routing
protocol. Second, it also provides the interconnection between the sensor network
and the outside world. Third, it keeps a list of the registered sensors and per-
forms several housekeeping operations (device resetting, etc.). Furthermore, we
note that it is possible to verify signatures on the gateway. However, additional
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Internet IEEE 802.15.4

RD#1
RD#2

RD#3

RD#4

RD#5

RERUM GW

RERUM MW

Fig. 2. Network topology used for the trials

functionality triggered by the verification result of the gateway is of separate
interest, and further discussed by us in [25,26].

The RERUM middleware comprises the backend, where the sensory data
is stored. Authorised end-used applications can request sensory data through
the middleware. For every distinct client request, the middleware communicates
with the gateway using an appropriate protocol over HTTP. Next, the gateway
translates this request to a CoAP one, and transmits the corresponding sensory
data back to the middleware. We note, that the communication between the
middleware and the gateway is performed through a secure VPN connection.

The trials were performed in a wireless sensor network with one RERUM
gateway and eleven RERUM devices. All components were installed in a building
owned by the Heraklion municipality. The RERUM devices were sensing, signing
and transmitting new values every 30 seconds.

4.2 Battery runtime and energy consumption

To get a practical comparison of signed sensing in a real world environment,
we installed a test setup of two RE-Motes with coin cells and AAA batteries.
Those RE-Motes sensed the ambient temperature and provided it throughout
the CoAP interface. The firmware images deployed were exact the same. The
only di↵erence was, that one device had signing enabled. The signed messages
were provided in JSS format. For signing, we used MicroECC with enabled in-
line assembly optimisations and secp192r1 curve. The CoAP client requested
the resources once in a 30 second interval. It was running on a standard PC
connected via a border router to the sensing devices.

First tests with standard 3V CR2430 coin cells revealed that coin cells are not
well suited to drive the RE-Motes: both ran for a maximum of roughly three and
a half hours before shutting down. There was no notable di↵erence in runtime
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of the device signing messages and the one emitting just plain messages. Slight
di↵erences were most probably caused by variations of the coin cells capacities.

To increase runtime and reveal real runtime di↵erences, we decided to switch
to standard AAA/LR03 batteries with a voltage of 1.5V. For each of the RE-
Motes we used two of those batteries in series, picked from the same batch (to
reduce the influence of the variations of di↵erent battery manufacturers).

Compared to the coin cell, the runtime with two AAA batteries was signifi-
cantly higher. The signing device achieved an average runtime of 6228 minutes,
whereas the other achieved approximately an additional half an hour, with an
average runtime of 6264 minutes. The di↵erence in runtime between two signing-
enabled runtime measurements and two signing-disabled runtime measurements
was 2% at most; potentially still caused by battery capacity variations.

To increase total performance and to avoid easy Denial-of-Service attacks
on sensing, the RE-Mote is not generating a new signature for every request.
Instead, the signature is generated only once within the (configurable) sensing
interval. This decreases the impact of signatures for the overall runtime e↵ec-
tively. Our lab measurements [3], revealed that the energy overhead of signatures
basically originates from the increased time period in which the CC2538 is not
in sleep mode. Therefore we decided for the trials to measure and sign only once
in every 30 seconds for each resource. The experiments show that signing with
such a low frequency does have little to no measurable impact on the overall
battery runtime in a real-world scenario.

5 Experimental validation

The investigated logs cover a period of two days of measurements resulting in
roughly 2.800 messages each for the resources ambient temperature and ambi-
ent humidity; both in signed JSS format and as well plain, unsigned, JSON.
The signatures were all verified as valid, which indicates that the network error
correction mechanisms described were working successfully and no message was
manipulated. To rule out implementation errors, we tampered signatures man-
ually by introducing single bit errors, which immediately caused the verifier to
correctly recognize them as manipulated.

The RE-Mote is using the 6LoWPAN adaption layer over 802.15.4 for sending
the JSS messages. Since the MTU is only 127bytes before packets get fragmented,
JSS messages with typical length of about 160bytes and more do not fit into a
single 6LoWPAN packet. While RFC7252 [27] states that a “CoAP message
[...] SHOULD fit within a single IP packet” in order to avoid fragmentation
on the IP layer, no strict requirements considering message size for constrained
networks are given. This problem gets addressed by the CoRE Working Group:
“Block-wise transfers in CoAP” [28]. This draft extends CoAP “with a pair of
‘Block’ options, for transferring multiple blocks of information from a resource
representation in multiple request-response pairs”.

The block options exist for both, requests (option Block1, e.g. POST and PUT)
and responses (option Block2, e.g. responses for GET requests), but for the use-
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case of the RERUM application, only the Block2 option for (JSS) responses is
relevant. The block sizes can be chosen by the client and must be of the power-
of-two, ranging from 24 = 16 to 210 = 1024bytes. The RERUM application
supports only sizes up-to 64bytes, since greater block sizes would again lead to
fragmentation on the 6LoWPAN / 802.14.5 layers. The block sizes used during
development and the trials is indeed 64bytes, since lower values would increase
the number of messages exchanged and thus the overall transmission overhead.

Client Server Client Server

1st packet

2nd packet

2nd packet
(resubmission)

3rd packet

1st packet

2nd packet

3rd packet

Fig. 3. A client is requesting a CoAP resource represented as a JSS message in three
CoAP blocks. The left side shows a communication without errors. To the right the
2nd CoAP block gets lost and the client requests re-submission prior requesting the
3rd block. Note that requests are represented as straight lines and responses as dashed.

A sample interaction between a client requesting a resource (e.g. ambient-
temperature) on a RE-Mote is depicted in Fig. 3. This sample resource is re-
quested as a signed JSS representation and has total length of 164bytes. Block-
wise transfer means that these JSS messages get divided into three blocks of
64+64+36bytes (the last block contains the remainder and is typically smaller
than the block size). The client specifies the desired block sizes and sends the
request to the RE-Mote, which answers with the first block of the requested
resource. Furthermore, the RE-Mote specifies the number of this block in the
sequence and if there are more blocks available for this resource. The client
subsequently requests the following blocks until it receives the last one. The RE-
Mote itself acts completely stateless and does neither need to do flow control
nor maintain any session information.

The RERUM application is deployed on constrained devices in low-power
and lossy networks [29]. Unreliable communication channels and high packet
loss are some of the challenges of those constrained networks. Since the RE-Mote
itself is a constrained device with limited memory and CPU performance, the
overhead of lost packets and transmission errors, and their impact are important
to consider. Here we examined the transmission overhead in case of lost packets
and transmission errors.
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The sensing RE-Mote is exposing the resources through the RESTful CoAP
interface. A normal personal computer with installed Firefox and the Firefox
CoAP add-on Copper [30] 15 is acting as a client. If the client issues a CoAP GET

request, this request gets passed to the network interface ‘tun0’ that is created
by Contiki’s tunslip script 16. This network tunnel is forwarding the IP packets
to the border router via the serial interface [31]. A second RE-Mote is acting
as the border router, flashed with the border router firmware image provided
by the Contiki project. The border router is responsible for translating between
6LoWPAN packets from the wireless sensor network and the other, ‘normal’
IPv6 packets. Once it receives packets through the serial line, it converts and
sends them to the wireless sensor network (which consists in our setup of one
sensor host only).

In the focus of this setup are packets that were coming from the sensing
RE-Mote; we did not manipulate packets from the client to the RE-Mote. We
altered the border router source code to simulate di↵erent network behaviours.
We implemented a feature to configure a drop frequency n, that triggers the
border router to drop every n-th packet coming from the sensing RE-Mote. This
allows to e↵ectively simulate an unreliable communication link, where packets
get lost during transmission with a configurable ‘unreliability’.

The second feature triggers bit errors such as flipping bits: a ‘flip signature bit’
parameter m can be configured to flip single bits of every m-th JSS signature
transmitted. We examined the network tra�c that goes through the tunslip

tunnel on the client machine with Wireshark 17.

The sample GET interaction depicted in Fig. 3 shows that the client is re-
questing the individual CoAP blocks one by one. Each request is marked as
‘confirmable’ and the client only succeeds if it has received an acknowledge-
ment (‘ACK’) for its request. To minimise the messages exchanged, the sensing
RE-Mote piggy-packs the acknowledgements onto the responses. If a packet loss
occurs and the client doesn’t receive the second CoAP block, the client waits
for the two seconds timeout and requests this block again. After successfully
receiving the missing block, the client proceeds with requesting the last block.
This interaction shows, that a single packet loss doesn’t cause the whole JSS
message to be retransmitted, but only that part, i.e. the CoAP block, that got
lost. In this scenario, the sensing RE-Mote acts completely stateless and is not
involved in the recovering of the lost packet, it just responds to the additional
request.

Now to simulate transmission errors, we configured the border router to flip
the last bit of the first character of the signature. Again, like in the scenario of
the packet loss, the UDP checksum [32] signals to the client a transmission error
and only the UDP datagram, i.e. the CoAP block that contained this bit error
is retransmitted, while the other blocks of the JSS message are una↵ected.

15
people.inf.ethz.ch/mkovatsc/copper.php (accessed 23 Aug 2016)

16
github.com/contiki-os/contiki/blob/master/tools/tunslip6.c

17
wireshark.org
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6 Conclusion and future work

In this paper, we presented the practical impact of using integrity protected
communication through elliptic curve based signatures performed in a real-world
IoT trial scenario. We proved that integrity protection on constrained devices is
possible now, however with some restrictions.

We showed that the Zolertia Z1 with the MSP430 chip was too constrained
to build a secure IoT application [4]. We did not succeed to build a sensing
application that incorporates a standard IoT operating system like Contiki, a
standards compliant CoAP and REST interface in combination with ECC sig-
natures on an adequate security level (more or equal than 192bit curve size) on
a chip with only 8KB RAM and around 60KB flash memory.

However we showed that the resources provided by the Zolertia RE-Mote
using a CC2538 chip with a ARM Cortex-M3 32bit chip, 32KB RAM and 512KB
flash are su�cient [3]. The lab results proved to be su�ciently stable using a
192bit curve size to go into trials.

In Lab testing we analysed several existing elliptic signature implementations
and libraries [4,3]. In terms of runtime and power consumptions MicroECC pro-
vided the best results and was therefore selected. Our new results show that this
turned out to be a good choice. MicroECC is in active development, easy to use
and performs well in terms of runtime and code footprint overhead.

Switching to the RE-Mote and the measurements, however, proofed that it
is possible to build a IoT application that provides integrity protection through
digital signatures and communicates with modern, standard-compliant proto-
cols. However, we did not tackle the key-distribution problem which needs to be
considered when building IoT applications with end-to-end security.

Besides the results from the trial scenario, additional runtime overhead mea-
surements were done. These extend the comparison of di↵erent ECC libraries
presented in [3] by an implementation that utilises the hardware crypto engine
capabilities of the CC2538 chip significant. Our results reveal that the hardware
accelerated implementation is performing better in terms of runtime, than the
already well performing MicroECC library. However, besides the runtime other
aspects like the problem of side channel attacks that MicroECC addresses have
to be considered in depth in future work.

This paper also extends the theoretical communication overhead consider-
ations done in [3], by practical aspects that influence the number of messages
exchanged in low-power and lossy networks, such as packet loss and transmission
errors. Our results show that CoAP and UDP o↵er robust and reliable commu-
nication, while still being lightweight. Transmission errors are treated in such a
way that also constrained devices, like the RE-Mote platform can handle them
with little overhead.

It is worth noting that our JSS message format used is not optimal for ex-
changing messages in terms of size. Therefore we expect that one can reduce the
communication overhead further by improving the formatting of the message
and the embedded signature. Another option is to limit signatures to average
values as we suggest in [26,25].
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