Towards quantifying the cost of a secure IoT:
Overhead and energy consumption of ECC
signatures on an ARM-based device*

Max Mossinger!, Benedikt Petschkuhn'!, Johannes Bauer!, Ralf C.
Staudemeyer!, Marcin Wéjcik? and Henrich C. Pohls!

nstitute of IT-Security and Security Law (ISL), University of
Passau, Innstr. 43, 94032 Passau, Germany
2Computer Laboratory, University of Cambridge, 15 JJ Thomson
Avenue, Cambridge CB3 0FD, UK
1hp]rcs@sec.uni—passau.de
’marcin.wojcik@cl.cam.ac.uk

Abstract

In this paper, we document the overhead in terms of runtime, firmware
size, communication and energy consumption for Elliptic Curve Cryptog-
raphy (ECC) signatures of modern ARM-based constrained devices. The
experiments we have undertaken show that the cryptographic capabili-
ties of the investigated Zolertia Re-Mote based on a TI's CC2538 chipset
running Contiki OS is indeed suitable for the Internet-of-Things (IoT):
Computing a signature using a curve with a 192-bit key length adds an
additional runtime of roughly 200 ms. However, we found that in com-
parison to sending an unsigned message approximately two-thirds of the
runtime overhead is spent on cryptographic operations, while sending the
signed message accounts for the remainder.

We give real measurements which can be used as a basis for analyt-
ical models. Our measurements show that the saving gained by using
curves with lower security levels (i.e., 160-bit key length) is not worth
the sacrifice in protection. While signatures add non-negligible overhead,
we still think that the additional 200 ms (signing with secp192r) is worth
consideration. This paper gives an indication of the true costs of crypto-
graphically protected message integrity which is greater or equal to the
cost of encryption. We show what needs to be spent in order to verify the
origin of the data in the application, since in the IoT it will have travelled
through many ‘things’.

*This is a pre-print.

1 Introduction

Deploying cryptographically strong security on constrained devices used as the
underlying platforms in the Internet of Things (IoT) was a long outstanding
quest. Still—according to a report from HP in 2015—this critical protection of
last mile communication remains an open issue [1]. The tools that can make the
significant impact on this issue are evolving constantly: Elliptic Curve Cryp-
tography (ECC) is known to be more resource efficient and is currently seeing
an update of standards that include new designs. These will aid in security, as
well as in interoperability.

Initially, ECC was presented independently by Miller [2] and Koblitz [3]
in 1986. More recently, ECC has become the standard tool for strong crypto-
graphic algorithms in the IoT device context. Widely known is the NIST stan-
dard containing the Elliptic Curve Digital Signature Algorithm (Elliptic Curve
Digital Signature Algorithm (ECDSA)) [4]. After recent criticism of ECC pa-
rameters being selected in a non-deterministic fashion, thus less trusted and
potentially insecure [5], new curves have been standardized [6], like Curve25519
proposed by Bernstein. Based on Curve25519 a signature algorithm named
Ed25519 is currently en route to standardization [7].

The question we strive to answer here is: What is the real overhead for ECC
signatures on constrained devices?'

Many implementations of ECC exist, which are well-suited for Wireless Sen-
sor Networks (WSN), like TinyECC [8], NanoECC [9], or NIST’s ECClight [10].
ECC on constrained devices has been further evaluated and optimised in [11].
That ECC can be very efficient, such as the curve with 160-bit key length imple-
mentation, is shown by Kern and Feldhofer [12]. A very lightweight ECC-based
construction for authentication to run on RFID-type devices was presented by
Braun, Hess and Mayer [13]. However, hardware has evolved and many of the
IoT devices already use ARM-based System on Chip (SoC) [14]%.

In our experiments, we evaluate the overhead in terms of runtime, code
footprint, energy consumption, and communication of signing and verifying a
message’s payload with ECC signatures. We start by giving some background
information about the cryptography, the hardware and the tested libraries in
Section 2. In Section 3 we explain the experimental setup. The evaluation
of runtime overhead and code footprint is given in Section 4, and for energy
consumption in Section 5. Finally, we look at the overhead of a Constrained
Application Protocol (CoAP) communication of a signed message in Section 6,
before we conclude in Section 7.

Ibased on research in the EU FP7 project RERUM (ict-rerum.eu)

2We imply ECC remains hardware supported, as in TI's CC2538 chipset. Recently ECC
support has been dropped, but we presume the co-processor can be micro-coded to speed up
new standardized curves (see: blog.spd.gr/2015/04/to-cc-or-not-to-cc.html).

2 Background

We investigate the overhead of a cryptographic operation called digital signa-
ture. Signatures protect the integrity of messages and allow to verify their
origin. In the following, we evaluate several related cryptographic libraries.

2.1 ECC signatures

Integrity is the “property that data has not been altered or destroyed in an
unauthorised manner” [15]. While integrity can be achieved on transport- and
message-level, we focus on message-level integrity, since it creates an integrity
check value over the actual message. This value can be verified even after the
message was sent over an unsecured communication channel or stored at a non-
trusted system to guarantee integrity. This is suitable to the IoT as information
from sensors is gathered by constrained devices and either forwarded to other
devices or stored in message queues to be picked up by applications [16].

To generate ECC-based signatures two distinct keys are required, likewise
to all asymmetric based digital signature schemes. One is called private key
used to generate signatures, the other one is called public key used to verify
signatures. The secret key must be generated, stored, and used, in such a way
that confidentiality is not violated at any time. In addition, the ECC-based
signature algorithm usually involves a hash function (e.g., SHA-256 [17], or
better).

In order to use signatures in practice, a key pair per device is required.
In contrast to symmetric-key cryptography this increases the security, as an
extracted key empowers an attacker to only impersonate that single device. For
the tests conducted in our experiments, we did not address the key distribution
problem.

2.2 Cryptographic libraries

From the existing sets of cryptographic libraries, we selected those, which were
suitable without significant underlying changes for both: (i) running under Con-
tiki and (ii) running on the ARM Cortex-M3 core. The following libraries were
short-listed as candidates for further investigation on our Re-Mote platform:
TweetNaCl [18], Pifiol [19] and MicroECC [20]. In order to run the libraries
on the Re-Mote we ported them to Contiki and adjusted the code whenever
necessary [21].

A better diversification of results was a main intent of our selection process.
Thus, we focused on selecting libraries that support a greater variety of features
and standards, i. e., MicroECC implements curves across different security levels,
whereas Pinol focuses on one security level but different coordinates. While this
approach makes a direct comparison more challenging, the results give a better
understanding of the actual ECC signature overhead on ARM-based constrained
devices, being the objective of this paper.

2.2.1 TweetNaCl library

TweetNaCl [18] is a compact implementation of the NaCl [22] library. It only
contains a C source file with its corresponding header file. The library is generic,
but some of the design choices are suited to 32-bit architectures. In addition,
the library does not perform any dynamic memory allocation and provides pro-
tection against cache-timing attacks. Although TweetNaCl includes all crypto-
graphic primitives of the original NaCl library, we selected only the Ed25519 [23]
primitive for signature evaluation.

2.2.2 Pinol library

the Pifiol [19] library implements the secp256r1 standardized NIST curve [4]
using three different coordinate representations: affine, homogeneous and jaco-
bian. The library is generic, although it features several optimisation techniques
and design choices, i. e., it allows a different word size for a point representation
and thus one can easily configure the library for both 16-bit and 32-bit plat-
forms. In addition, to perform a more efficient point doubling computation the
library supports a sliding window size technique.

2.2.3 MicroECC library

Similarly to Pinol, the MicroECC library implements five standard NIST curves [4]:
secpl60rl, secpl92rl, secp224ri, secp256kl, and secp256rl which can be
used for ECDSA. The library is implemented in C, but to increase performance,

it can be adjusted to use the inline assembly feature for our target ARM archi-
tecture. The MicroECC library can optionally be optimised for either speed or
code size and, similar to TweetNaCl, features a protection against cache-timing
attacks.

3 Experiments

We use the Zolertia Re-Mote [14] development board as the underlying plat-
form, which houses the CC2538 chipset—a recent SoC design by Texas Instru-
ments. The device contains an ARM Cortex-M3 as core processor, on-chip
memory modules, an IEEE 802.15.4-compliant radio transceiver module, and
a co-processor capable of performing cryptographic operations. The Re-Mote
is well-suited to run Contiki [24], an modern operating system specifically de-
signed to support a wide-range of constrained devices. All our experiments run
as applications on top of Contiki.

For the cryptography-only measurements, we disabled the network stack in
order to eliminate unnecessary interrupts, additional energy consumption, and
all other side effects, that might be imposed by the integrated radio module and
related software code.

3.1 Code footprint tests setup

To investigate the code footprint of the target primitives and schemes, we used
a standard gcc-arm toolchain available for CC2538 devices. Static code size
values can be obtained from the Executable and Linkable Format (ELF) file, by
using aforementioned toolchain. The ELF file represents a compiled and already
linked executable and can be uploaded into the flash memory of the Re-Mote
device.

The static code size of the target function was obtained as follows: (i) we
measured a static code size of the whole project, (i) all code dependencies to
our target library were removed, and (%) the resulting elf file was stripped and
the code size measured. Finally, (iv) we compared the measured size to the
original project size, therefore obtaining the requested code footprint.

3.2 Runtime tests setup

For measuring timings under Contiki, we developed our own tool called timelib,
due to the lack of any suitable library. timelib consists of multiple useful func-
tions to automate the measurement process and to provide standardised output,
well suitable as an input to other tools. Our tool supports two modes: tim-
ing and power-trace. In timing mode, timelib prints the values of the internal
Re-Mote timer for each measured task to standard output. Alternatively, in
power-trace mode timelib triggers power measurement periods by activating/i-
nactivating an external pin.

For runtime measurements, we used the internal real-time clock of the CC2538
chip, which runs at 32.768 kHz [25]. We observed each cryptographic operation
over a period of 10 minutes, performing the measurements multiple times. The
timelib tool analyses the output, aggregates the measured time of each task and
computes the average over several iterations.

3.3 Energy consumption tests setup

We did tap the power supply lines going via USB to the Re-Mote device. To
perform the power measurements an analog-digital-converter (AD-converter) of
type MCP3008 [26] was used. The said converter is triggered by a Raspberry
Pi over the Serial Peripheral Interface (SPI) and results are read back. Each
measurement contains time-stamp and measured value. The python scripts and
wiring diagrams, are based on the work of Erik Bartmann [27]. The MCP3008
is supplied by 3.25V and has a resolution of 1024 bits, these parameters limit
the maximal resolution to 3.17mV /bit [26]. The AD converter works within the
range of 2.5 ms to 10 ms per measurement. To be safe, we assume the worst
resolution and set the shortest measurable task cycle to 10 ms.

To automate the process of analysing these traces, we developed another tool
called powertracer-tool. The tool generates two kinds of traces: a time trace and
a power trace. The time trace consists of the task names and their duration,
whereas the power trace consists of the voltage on the measurement points and

the marker positions of the glowing LED marker points. The measurement
process starts by the generation of a timing trace, which is next saved as a log
file. Furthermore the Raspberry Pi generates the power data, which is then
analysed together with the timing trace. In the end the powertracer-tool syncs
the information from the timing of each selected task with the power trace and
thus gives energy statistics for each given task. The output of a power trace is
partially shown in Figure 1.

To achieve the aforementioned synchronisation, task start/stop checkpoints
are marked by activating the LEDs and its higher—clearly observable—power
drain is used as a marker. Consequently, the energy consumption for each
power measuring point within this interval is calculated. The interval does not
contain the power measuring point for the marker. The energy consumption is
calculated in mJ. Please note that the limitation of the used hardware gives a
minimum timing interval of 10 ms. Afterwards the sum of all measuring points
between the two markers will be used to calculate the total consumption of a
given task. In a test run each task is executed several times. The measurements
stated in this paper’s tables are the average value of several runs.

3.4 Cryptographic libraries adjustments

No optimisation for the processor, Contiki, or otherwise was done to the li-
braries. In order to achieve consistent and reproducible measurements, we crip-
pled security and all calls to Pseudo-Random Number Generator (PRNG) are
replaced with a function generating a fixed output. For all curves, the used hash
function is included into the measurement. We have timed the hash function
explicitly for each task and found the overhead to be minimal, i.e. in the region
of a few ms. Note that we fixed the length of the message to sign in our tests to
15 bytes. Since our selected cryptographic primitives heavily use the memory
stack, we increased the stack size from Contiki’s default value for the CC2538
chipset of 2048 bytes to 4096 bytes.

TweetNaCl: Although the source code does not target Contiki, the code inte-
gration was straightforward; with little need for adjustments. Our investigated
implementation of Ed25519 uses an internal SHA-512 hash function.

Pinol: The library was originally designed for Contiki, thus no source code
tweaks were required. Similarly to TweetNaCl the implementation includes a
hash function, but this time the SHA-256 version. We investigated all three
different coordinate systems provided by the author and two 16-bit and 32-bit
word size options. For brevity we only present the 32-bit results, since this is
the target architecture on the Re-Mote.

MicroECC: Here the original library is not perfectly suited to run under Con-
tiki, thus we performed a few minor tweaks. Our investigated library version
excludes a hashing step, therefore, we applied SHA-256 to be consistent across
libraries. For each of the curves there are three possible configurations, that use
different inline assembly code optimisations: no inline assembler code, inline
assembler code optimised for compact size, and inline assembler code optimised
for fast execution.

400 1.4 |.....

lli &
|| AN
Hi |] ‘III‘
.
\

Power[mwW]

200

> IV OV @@l TN RNy Iy Iy G i gu v 1o oy
N 3

150 Lo U

Time[ms]

Figure 1: Power trace output for first 150 ms of the test’s duration
7

4 Performance and Code Footprint Evaluation

In this section, we state and compare the results of time and code footprint
measurements for the implementations of our TweetNaCl, Pinol and MicroECC
target libraries. This includes all possible configuration options supported.
TweetNaCl: Table 1 shows the timing and the code footprint results of the
TweetNaCl library. TweetNaCl accomplished the key generation in 3.518s,
signature generation in 3.532s, and verification in 7.047 s.

Pinol: Table 2 shows the timing and the code footprint results of the Pinol
library. We measured all 12 possible configurations supported by the library,
i.e., 16-bit and 32-bit options with affine (af), homogeneous (hm) and Jacobian
(jb) coordinates. For the purpose of the paper, we included only results for 32-bit
option. We successfully replicated timing and code footprint results documented
in [19].

As shown in Table 2, the best performing configuration is with the Jacobian
coordinate system without sliding window and optimised for 32-bit operations.
However, in all variants the timing differences in the configuration with and
without sliding window are either negligible or slightly (within the range of
100 ms on average) in disfavour of the latter.

As shown in Table 2, the smallest code size is accomplished by using the affine

coordinates optimised for 32-bit architecture. In this case the compactness is
achieved at the expense of speed. In addition, there is no difference in the static
code size of the implementations between versions with and without a sliding
window. The largest static code footprint results from the implementation that
achieved the best performance results. The difference between the smallest and
the largest code size is in the range of 1418 bytes.
MircoECC: Table 3 shows the timing and the code footprint results of the
MicroECC library. We measured all possible configurations, i.e., all five curves
with all possible speed versus code size optimisation (fast, standard, small). The
optimisations are possible through inline assembly insertion in critical parts of
the code.

Since MicroECC includes elliptic curves on different security levels, a direct
comparison is misleading. Instead, we noticed differences between a generic
implementation and a platform-dependent assembler-optimised version. For
example, secp256r1 without any inline assembler optimisations runs in 1.129s,
while the platform-dependent fast version took only 0.489s on average. This is
a notable advantage of 0.640s, which is around 2.3 times faster.

As shown in Table 3, the general difference of the code size between a curve
with a short key size and one with a larger key size is considerably small. There
is only a difference of 168 bytes between the curve with the lowest security level
(secp160rl) and the highest security level secp256rl. In addition, savings in
terms of code size between the versions optimised in this regard compared to
those without are of around 200 bytes.

Table 1: TweetNaCl timing and code footprint results
’ Configuration ‘ KeyGen] ‘ Sign [s] ‘ Verify [s] ‘ Code Size [bytes] ‘

| Ed25519small | 3518 | 3.532 | 7.047 | 6776 |

Table 2: Pinol timing and code footprint results

’ Configuration ‘ KeyGen [s] ‘ Sign [s] ‘ Verify [s] ‘ Code Size [bytes] ‘
secp256rl_af_32 26.644 26.420 52.977 6915
secp256r]l_af 32sw 26.712 26.503 52.832 6915
secp256rl_hm_32 10.829 10.820 21.449 8153
secp256r1_hm_32sw 10.842 10.858 21.798 8153
secp256r1_jb_32 6.425 6.439 13.075 8317
secp256rl_jb_32sw 6.521 6.588 13.175 8317

5 Power consumption evaluation

Now we shift our focus to the evaluation of the energy efficiency. In this section,
we present the energy consumption results of all investigated signature schemes.
Similarly to timing and code size results, we perform our tests using all possible
configurations available in the libraries. All values are expressed in joule.

5.0.1 TweetNaCl

Table 4 shows the measured energy consumption results of the TweetNaCl li-
brary, i.e., the signature scheme Ed25519. As it can be seen, energy consump-
tion of Verify is much higher than KeyGen and Sign. This is expected since
the execution time of Verify is longer.

5.0.2 Pinol

The measured power consumption results of the Pinol library are given in Ta-
ble 5. It is not surprising, that the energy consumption of a particular primitive
is strongly related to its execution time, similarly to TweetNaCl.

5.0.3 MicroECC

In Table 6 we present the results of the measured energy consumption for the
MicroECC library. Similarly to TweetNaCl and Pinol the results are strongly
related to execution times.

Table 3: MicroECC timing and code footprint results
Configuration ‘ KeyGen [s] ‘ Sign [s] ‘ Verify [s] ‘ Code Size [bytes] ‘

secpl60rl _fast 0.177 0.211 0.225 5301
secpl160rl_std 0.318 0.356 0.386 4679
secpl60rl_small 0.260 0.296 0.320 4522
secpl192rl _fast 0.181 0.206 0.224 5225
secpl92rl_std 0.409 0.437 0.485 4223
secpl92rl_small 0.305 0.333 0.368 4042
secp224r] _fast 0.262 0.297 0.324 5825
secp224rl _std 0.593 0.630 0.700 4311
secp224rl_small 0.438 0.475 0.525 4130
secp256k1 _fast 0.420 0.467 0.476 6301
secp256k1 _std 0.925 0.972 1.010 4227
secp256k1_small 0.665 0.714 0.737 4050
secp256r] _fast 0.489 0.537 0.595 6605
secp256rl_std 1.129 1.177 1.320 4531
secp256r1_small 0.805 0.855 0.957 4354

Table 4: TweetNaCl energy consumption results
’ Configuration ‘ KeyGen [J] ‘ Sign [J] ‘ Verity [J] ‘

| Ed25519.small | 0.332 | 0333 | 0665 |

6 Communication of signed JSON messages

Finally, we measure a full interaction by involving a Re-Mote platform, which
was able to answer to CoAP requests with signed messages. To generate ECC-
based signatures we selected the secp192r1 curve and the MicroECC library.
We ran the CoAP stack that can be configured within Contiki.

For the messages exchanged using CoAP we selected the JSON Signature
Scheme (JSS) [16]. The JSS header contains meta-information about the sig-
nature algorithm embedded in a JavaScript Object Notation (JSON) message
as a dedicated element jss.protected. The signature value itself gets en-
coded in BASE64URL ? and embedded as the element jss.signature. In
contrary to JSON Web Signatures (JWS) [28], only the signature gets encoded
in BASE64URL and the payload is untouched.

One sample JSON Sensor Signatures (JSS) message—containing a temper-

3Base64 Encoding with URL and Filename Safe Alphabet (RFC4648)

10

Table 5: Pinol energy consumption results

Configuration KeyGen [J] | Sign [J] | Verify [J]
secp256rl_af_32 2.712 2.709 5.494
secp256r1_af 32sw 2.569 2.542 5.073
secp256r1_hm_32 1.050 1.048 2.112
secp256rl_hm_32sw 1.045 1.032 2.094
secp256r1_jb_32 0.632 0.638 1.276
secp256rl_jb_32sw 0.625 0.623 1.248

ature value of a sensor and a measurement ID as payload—sent by our appli-
cation is depicted in Figure 2. The length of this message is 154 characters,
but can vary, depending on the size of the measurement ID. The signature al-
gorithm identifier ES192 shows that we were using secp192r1l in combination
with SHA256. The same message without integrity protection, i.e., no signature
(it does only contain the red marked area in Figure 2) results in a length of
39 characters. Hence, the overhead of sending a JSS message is 115 characters
(bytes) or 195%.

"jss.protected": {
llalgll . ||E5192||

¥
"chip_temp":20953,

"measurement_id":34,
"jss.signature":"fgjeeel1R0OIM]"

Figure 2: Sample JSS message (above e e e indicates removed characters; spaces
were added for better readability)

Before the message was signed, it was hashed with the built-in, hardware-
accelerated SHA-256 function of the Re-Mote’s CC2538 chip. Afterwards the
generated signature was encoded in BASE64URL and put into the JSS mes-
sage. The runtime overhead of the signing process was determined by using the
integrated timer of the CC2538 chip. These measurements were performed mul-
tiple times for each step of the signing process. It turned out that the SHA-256
hashing and the BASE64URL encoding had a negligible affect on the runtime:
The total duration of hashing and encoding was less than 1 ms. The aver-
age runtime was 218 ms for generating a signature using the secp192r1 curve
implementation from MicroECC (as shown in Table 7).

The code size overhead results for ECC-based signatures on the Re-Mote us-
ing the MicroECC library, the BASE64URL encoding algorithm, and additional

11

Table 6: MicroECC energy consumption results
Configuration ‘ KeyGen [J] ‘ Sign [J] ‘ Verify [J] ‘

secpl60rl_fast 0.016 0.020 0.021
secpl160rl_none 0.030 0.033 0.036
secpl60rl_small 0.024 0.027 0.030
secpl92rl fast 0.016 0.019 0.020
secpl92rl_none 0.037 0.040 0.044
secpl92rl_none 0.028 0.031 0.034
secp224rl fast 0.024 0.027 0.029
secp224rl _none 0.055 0.058 0.065
secp224rl_small 0.041 0.044 0.049
secp256k1_fast 0.038 0.042 0.043
secp256k1_none 0.085 0.089 0.093
secp256k1_small 0.064 0.069 0.071
secp256r1 _fast 0.044 0.048 0.054
secp256rl_none 0.105 0.109 0.123
secp256r1_small 0.075 0.080 0.089

variables like the signing buffer are shown in Table 7.

To measure the code footprint the previously described setup was used. A
verification with the gcc-arm-none-eabi-objdump tool confirmed that the Mi-
croECC and BASEG4URL libraries were not linked into the firmware image
when measuring the code footprint of the image with disabled signatures. Com-
paring the sizes of both images showed a total code size overhead of 5.89 kb.

Finally, we compared the timing overhead for requesting a signed JSS mes-
sage and an unsigned JSON message. The request for an unsigned JSON mes-
sage was answered by the application with one COAP message, whereas the
same message as signed JSS was transmitted in three COAP blocks. The tim-
ing overhead for transmitting messages is also shown in Table 7. Note that

Table 7: TIMING AND CODE FOOTPRINT OVERHEAD FOR SENDING
JSS MESSAGES WITH SECP192r AND MICROECC

JSS Signing Total Overhead Code Overhead
[ms] | Transm. [ms] | Transm. [%)] | Size [kb] | Code [%]
disabled - 92 - 79.58 -
enabled 218 361 292 85.47 7.4

12

the application doesn’t answer each request with a new signature: reading the
current sensor value and signing it is done once in an interval of 30 seconds and
then stored to an internal buffer. Consequently, the overhead for transmitting
a JSS message is almost 300% compared to an unsigned JSON message due to
the increased size of COAP messages (blocks).

7 Conclusion and future work

In this paper, we document the overhead in terms of runtime, firmware size,
communication, and energy consumption for ECC signatures. The experiments
undertaken show that the cryptographic capabilities of modern ARM-based con-
strained devices (Zolertia Re-Mote based on TI’s CC2538) running a modern
OS (Contiki OS) are suitable for a more secure Internet-of-Things (IoT): Com-
puting a signature using a curve with a 192-bit key length adds an additional
runtime of roughly 200ms. However, in comparison to sending an unsigned
message, which would fit in one COAP message, we find that roughly two-third
of the runtime overhead is spent on cryptographic operations, and one third is
spent on sending the signed message. For the implementation done by Pinol,
which also targets Contiki, we replicated the results on timing and extended
them by providing real energy consumption measurements complementing the
estimations provided in said work. Note, that the real measurements we present
can be used as a basis for analytical models.

Our measurements further reveal that the saving gained while using curves
with lower security levels (i.e., using a 160-bit key length) is not worth the
sacrifice in protection. While signatures add a non-negligible overhead, we still
think that the additional 200 ms (signing with secp192r) is worth considera-
tion. This paper gives an indication of the true costs to gain cryptographically
protected message integrity. This can be seen as an upper bound to the cost for
message encryption to protect confidentiality. We show what resources need to
be spent in order to verify the origin of the data, in the light that in the IoT
this data will have travelled through many ‘things’.

It is worth noting that some of the cryptographic primitives that we in-
vestigated (i.e., NIST ECCs) are suitable for a hardware acceleration using
a cryptographic co-processor available in some ARM-based chipsets, like TT’s
C(C2538 System-on-Chip. Therefore we expect we expect further improvements
in terms of computational overhead and memory footprint. However, facilitat-
ing hardware acceleration is out of the scope of this paper. Finally, our results
hint that it would be worthwhile to investigate if the increase in message size for
ECC-based signatures and the induced communication overhead can be reduced
by using signatures offering message recovery, e.g., [29, 30, 31].

13

Acknowledgment

We would like to thank Andrew Moore and George Oikonomou for their invalu-
able help during the course of this work. J. Bauer, B. Petschkuhn, H. C. P6hls,
R. C. Staudemeyer, M. Wéjcik were supported by the European Unions 7th
Framework Programme (FP7) under grant agreement no 609094 (RERUM). H.
C. Po6hls was also partly supported by the European Unions Horizon 2020 Pro-
gramme under grant agreement no 644962 (PRISMACLOUD). M. Wdjcik has
also partly received funding from the European Union’s Horizon 2020 research
and innovation programme 2014-2018 under grant agreement No. 644866. This
paper reflects only the authors’ views and the European Commission is not
responsible for any use that may be made of the information it contains.

References

[1] Hewlett Packard Enterprise, “Internet of Things research study,” Tech.
Rep. July, nov 2015.

[2] V. Miller, “Use of elliptic curves in cryptography,” in Proc. of Advances in
Cryptology (CRYPTOS85). Springer, 1986, pp. 417-426.

[3] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,
vol. 48, no. 177, pp. 203-203, jan 1987.

[4] Federal Information Processing Standards Publication, “Digital Signature
Standard (DSS),” Gaithersburg, MD, Tech. Rep., jul 2013.

[5] D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hiilsing, E. Lambooij,
T. Lange, R. Niederhagen, and C. van Vredendaal, “How to manipulate
curve standards: a white paper for the Black Hat,” in JACR Cryptology
ePrint Archive, 2015, vol. 2014, pp. 109-139.

[6] A. Langley, M. Hamburg, and S. Turner, “Elliptic curves for security,”
IRTF RFC 7748, Tech. Rep. 7748, jan 2016.

[7] N. Moeller and S. Josefsson, “IETF Draft: EADSA and Ed25519,” 2015.

[8] A. Liu and P. Ning, “TinyECC: a configurable library for elliptic curve
cryptography in wireless sensor networks,” in Int. Conf. on Information
Processing in Sensor Networks (ipsn 2008), apr 2008, pp. 245-256.

[9] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab, “Na-
noECC: testing the limits of elliptic curve cryptography in sensor net-
works,” in Wireless Sensor Networks, Berlin, Heidelberg, 2008, pp. 305—
320.

[10] National Institute of Standards and Technology (NIST), “ecc-light-
certificate library,” 2014. [Online]. Available: https://github.com/
nist-emntg/ecc-light-certificate

14

[11]

[13]

[14]

[15]

[16]

[22]

[23]

J. Ayuso, L. Marin, A. Jara, and A. F. G. Skarmeta, “Optimization of
Public Key Cryptography (RSA and ECC) for 16-bits Devices based on
6LoWPAN,” in 1st Int. Workshop on the Security of the Internet of Things,
Tokyo, Japan, 2010.

T. Kern and M. Feldhofer, “Low-resource ECDSA implementation for pas-
sive RFID tags,” in 17th IEEE Int. Conf. on FElectronics, Circuits, and
Systems (ICECS’10), 2010, pp. 1236-1239.

M. Braun, E. Hess, and B. Meyer, “Using elliptic curves on RFID tags,”
International Journal of Computer Science and Network Security, vol. 2,
pp- 1-9, 2008.

Zolertia, “Re-MOTE,” 2015. [Online]. Available: http://zolertia.io/
product/hardware/re-mote

ISO/IEC, “ISO-IEC 7498-2: Information processing systems Open Systems
Interconnection Basic Reference Model. Part 2: Security Architecture,”
Tech. Rep., 1989.

H. C. Pdhls, “JSON Sensor Signatures (JSS): end-to-end integrity protec-
tion from constrained device to IoT application,” in Proc. of the Workshop
on Extending Seamlessly to the Internet of Things (esloT), 2015, pp. 306—
312.

Q. H. Dang, “Secure Hash Standard,” National Institute of Standards and
Technology, Gaithersburg, MD, Tech. Rep. August, jul 2015.

D. J. Bernstein, B. van Gastel, W. Janssen, T. Lange, P. Schwabe, and
S. Smetsers, “TweetNaCl: A Crypto Library in 100 Tweets,” in Progress
in Cryptology-LATINCRYPT 2014, 2015, pp. 64-83.

O. Pinol Pinol, “Implementation and evaluation of BSD Elliptic Curve
Cryptography,” Master thesis (pre-Bologna period), Universitat Politécnica
de Catalunya, nov 2014.

K. MacKay, “Micro-ecc,” 2016. [Online]. Available: http://kmackay.ca/
micro-ecc/

M. Mossinger, “Measurement of Elliptic Curve Cryptography implementa-
tions for Contiki on a Re-MOTE,” M.Sc. thesis at University of Passau,
Germany, 2016.

D. J. Bernstein, T. Lange, and P. Schwabe, “The security impact of a new
cryptographic library,” in Progress in Cryptology-LATINCRYPT 2012,
2012, pp. 159-176.

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of Cryptographic Engineering,
vol. 2, no. 2, pp. 77-89, 2012.

15

[24]

[25]

[26]

[30]

[31]

A. Dunkels and E. al., “The Contiki operating system,” 2016. [Online].
Available: http://www.contiki-os.org/

T. Instruments. CC2538 a powerful System-On-Chip for 2.4-GHz
IEEE 802.15.4 and ZigBee applications. [Online]. Available: http:
//www.ti.com/product/cc2538

Microchip Technology Inc., “MCP3004/3008,” p. 40, 2005. [Online].
Available: http://www.adafruit.com/datasheets/MCP3008.pdf

E. Bartmann, “Raspberry Pi- AddOn - Der A /D-Wandler MCP3008 v1.3,”
adafruit, Tech. Rep., 2012. [Online]. Available: www.erik-bartmann.de

M. Jones, J. Bradley, and N. Sakimura, “IETF draft: JSON Web Signatures
(JWS),” 2015.

R. R. Ramasamy and M. A. Prabakar, “Digital Signature Scheme with mes-
sage recovery using Knapsack-based ECC,” IJ Network Security, vol. 12,
no. 1, pp. 7-12, 2011.

S.-F. Tzeng and M.-S. Hwang, “Digital signature with message recovery and
its variants based on elliptic curve discrete logarithm problem,” Computer
Standards € Interfaces, vol. 26, no. 2, pp. 61-71, 2004.

Z.-m. Zhao, Y.-g. Wu, and F.-y. Liu, “A signature scheme with message
recovery based on elliptic curves,” Computer Engineering & Science, vol. 2,
p- 2, 2005.

16

