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Abstract

This report presents the results of the work undertaken as part of Task 5.3 “Proof-of-Concept
Laboratory Experiments”. The aim of the in-lab experiments is to conduct proof-of-concept controlled
tests to assess both qualitatively and quantitatively the performance gains of the protocols and
algorithms, as well as the individual system modules developed in work packages WP2-WP4. The
results of these lab tests will be used to identify potential issues and try to resolve them by revising
the software or the hardware modules. This feedback cycle will result to the improvement of the
components tested, and these will be applied in the first phase of the live trials in the pilot cities. For
the performance evaluation activities, we followed the evaluation methodology defined in Deliverable
D5.1. Moreover, this deliverable received the developed software and hardware components from
T5.2. The results from the in-lab experiments will enhance the components that will be integrated in
task 5.2 for the trials performed in two cities, in task 5.4 for Heraklion and in in task 5.5 for Tarragona.
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Executive summary

This deliverable presents the results of the indoor experiments that were undertaken in order to
evaluate the separate mechanisms developed within the RERUM project. The goal of these
mechanisms is to improve the security, privacy, network reliability and energy efficiency of loT
systems. RERUM had put a significant emphasis on the hardware devices that are fundamental
elements of any loT system and aimed to develop mechanisms that would be able to run flawlessly on
those constrained devices. In the technical workpackages of the RERUM project, the developed
mechanisms were evaluated either using simulations or analytically. However, the road from
simulations to real-world trials is very long and none can be sure that the developed mechanisms will
be able to perform perfectly in a real environment. For this reason, within RERUM we defined an
intermediate step for testing the mechanisms and the hardware in controlled environments within
laboratories. That way, we could identify early misbehaviours, malfunctions, bugs and issues that
would be very easily fixed in such environments. Only after the mechanisms are evaluated positively
in the experiments they will get the approval to be tested in the real-world trials.

Thus, in the experiments, the objective is to qualitatively and quantitatively assess the performance
gains of the protocols, algorithms and hardware developed within WP2-WP4. Considering the nature
of each mechanism to be tested, several experiments were identified in RERUM Deliverable D5.1
[RD5.1] and these were split into three main categories: (i) security and privacy on sensor platforms,
(i) network reliability and (ii) privacy on android smartphones. In all experiments, the tested
mechanisms were evaluated not only for their performance, but also for their energy consumption
and resources (CPU/memory) consumption to ensure a flawless operation in real world trials.

As it can be seen form the experiments, all developed mechanisms give very promising results
regarding both their performance and their lightweight operation. The experiments basically showed
that, contrary to previous impressions, it is not infeasible to apply advanced security and privacy
preserving mechanisms on constrained loT devices. If the mechanisms are designed to be lightweight,
they can have a great performance, while at the same time consume very little resources and energy.
The stability of the developed software during all tests was also noticed in the experiments.
Furthermore, the excellent performance of the developed hardware (the Zolertia RE-Mote platform)
was a very interesting result, showing that it can be a key platform for advanced loT applications.

Summarizing, the experimental results presented in this deliverable are very promising for the real-
world trials that have already started and will run until the end of the project. The experiments helped
to identify minor flaws and bugs in both software and hardware, which have already been fixed and
thus no similar issues are expected to be found in the trials.
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Abbreviations
6LoWPAN IPv6 over Low power Wireless Personal Area Networks
ABER Average Bit Error Rate
ACE Authentication and Authorization for Constrained
Environments (IETF WG)
AES Advanced Encryption Standard
ANPE Average Number of Path Estimations
ASNR Average Path Signal-to-Noise Ratio
AWGN Additive White Gaussian Noise
AP| Application Programming Interface
BMFA Bi-Directional Multicast Forwarding Algorithm
CADC Congestion-Aware Duty Cycling
CBR Constant Bit-Rate
ccl Channel Check Interval
CCR Channel Check Rate
CDF Cumulative Distribution Function
CoAP Constrained Application Protocol
CPM Change Point Method
CR Compression Rate
Cs Compressive Sensing (or Compressed Sensing)
Csl Channel State Information
CSMA Carrier Sense Multiple Access
DAG Directed Acyclic Graph
DBPSK Differential Binary Phase Shift Keying
DES Data Encryption Standard
DODAG Destination-Oriented Directed Acyclic Graph
DSA Digital Signature Algorithm
DSS Digital Signature Standard
DTLS Datagram TLS
DTMC Discrete Time Markov Chain
ECC Elliptic Curve Cryptography
ECDSA Elliptic Curve Digital Signature Algorithm
EtED End-to-End Delay (EtED)
ETX Expected Transmission Count
FWHT Fast Walsh-Hadamard Transform
GPIO General-Purpose Input Output
HBHO Hop-By-Hop Option
12C Inter-Integrated Circuit
ICMPv6 Internet Control Message Protocol version 6
IEEE Institute of Electrical and Electronics Engineers
IERC Internet of Things European Research Cluster
IETF Internet Engineering Task Force
loT Internet of Things
ISM Industrial Scientific Medical
JSON JavaScript Object Notation
JSS JSON Signature Scheme
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KS Kolmogorov-Smirnov

LiPo Lithium Polymer Batteries

LPM Low-Power Mode

MAC Medium Access Control

MC Matrix Completion

MGF Moment Generating Function
MOFSET Metal-Oxide Transistor

MPL Multicast Protocol for Low power and Lossy Networks
MPR Multiple Packet Reception

ND Network Density

OF Objective Function

OomMP Orthogonal Matching Pursuit

opP Outage Probability

(ON) Operating System

0sC Oscillator

PDF Probability Density Function

PDR Packet Delivery Ratio

PKCS Public Key Cryptographie Standard
PLL Phase-Locked Loop

PM Power Mode

QoS Quality of Service

RD RERUM Device

RDC Radio Duty Cycling

RFC Request For Comments

RIP Restricted Isometry Property

RPL IPv6 Routing Protocol for Low Power and Lossy Networks
RX Reception

SD Selection Diversity

SEC Switch and Examine Combining
SHA Secure Hash Algorithm

SINR Signal to Interference-plus-Noise Ratio
SMRF Stateless Multicast RPL Forwarding
SNR Signal to Noise Ratio

SP Switching Probability

SPI Serial Peripheral Interface

SRM Structurally Random Matrix

SSC Switch and Stay Combining

TLS Transport Layer Security

™ Trickle Multicast

X Transmission

UART Universal Asynchronous Receiver Transmitter
UbGM Unit Disk Graph Medium

VBR Variable Bit Rate

WDT Watchdog Timer

WEFI Wait For Interrupt

WG Work Group
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WSN Wireless Sensor Network
X0SC Crystal Oscillator
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Definitions
Term Definition Source

Acting An (embedded) device that has the capability to affect the | RERUM/

element ior;dltlotr‘\ of a Phy5|calI Er;t!ty,l (I'lke <I:hang|ng its state or moving loT-A part of
it) by acting upon an electrical signa actuator

[IOTA]

Actuator A smart device that includes one or several acting elements and | RERUM/
receives (IT-based) commands translating them to electrical loT-A
signals for the acting elements. An actuator can also include a
sensor so that there is knowledge on the Physical Entity it acts
upon, in order to translate correctly the command into the
electrical signal.

Application The point responsible for the end-user services (e.g., automation | RERUM/

server services, energy management, etc.). The Application server may loT-A
reside either in the internet or in the RERUM domain and is
responsible for accepting dynamic resource requests, executing
the appropriate actions, and returning the results to the user.

Context Context is any information that can be used to characterize the | [AG99]
situation of an entity. An entity is a person, place, or object that
is considered relevant to the interaction between a user and an
application, including the user and applications themselves.

Cluster A group of wireless (mainly sensor) nodes that work together for | RERUM,
a more efficient and scalable organisation and management of | based on
the network. [AYO07]

Cluster Head | The RERUM Device that plays the role of the Head of a Cluster | RERUM,

(CH) within the RERUM network. The CH is responsible for routing the | based on
data from the members of the cluster to the rest of the network, | [AY07]
as well as to take centralized networking decisions. The CH is
either pre-assigned or can be selected by the RERUM Devices.

Clustering The process of splitting the network in clusters and electing CHs. | RERUM,

based on
[AYO07]

Consent Within RERUM the user consent is used for privacy purposes, | RERUM
when the system will ask the user if he allows to send his data to
an application that requests them.

Device It can be a single or a combination of the following elements: loT-A

e Sensors, which provide information about a Physical
Entity
e Tags, which are used to identify Physical Entities
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e Actuators, which can modify the physical state of a
Physical Entity

A functional component that executes the process of the

Federation ) ) RERUM
Head (FH) Federation of VRDs. It can be assigned to any powerful RD, the
GW or a centralized server.
Federation Several Virtual RERUM Devices are forming a Federation if they | RERUM
of Virtual cooperate to offer a joint service for a Virtual Entity (VE). The
RERUM logic necessary to orchestrate the service is associated to the
Devices Virtual Entity that offers the service.
Gateway Network node equipped for interfacing with another network | Federal
(GW) that uses different protocols. Standard
1037C [SF96]
Generic This is a software artefact that groups both virtualisations found | RERUM
Virtual in RERUM, namely the Virtual Entities and Virtual RERUM Devices
RERUM that share properties like, that
Object (GVO .
ject ( ) e they allow to be discovered,
e they allow to be addressed, and they allow to be

interacted with in a standardized manner.
Internet e These are sources of data/measurements that originate RERUM
Resources from outside of the RERUM domain and can be used as

input for the applications.
RERUM e Within RERUM, the Middleware is assumed to be a RERUM
Middleware software layer or a group of functionalities that allows
(MW) heterogeneous devices to be discovered, addressed and

accessed by the applications in a seamless and unified

way. The Middleware includes the virtualisation of

devices to hide their heterogeneity.
Physical e Adiscrete, identifiable part of the physical environment Merriam-
Entity (PE) which is of interest to the user for the completion of his | \yepster

goal. Physical Entities can be almost any object or | dictionary'/

environment. IOT-A
RERUM A RERUM Device can play the role of an Aggregator, when it | RERUM
Aggregator collects, processes (aggregates, encrypts, filters, etc.)

data/measurements from many other RERUM Devices and
forwards them to the GW/Middleware/Application Server. A
RERUM aggregator can be considered as an RD playing the role
of a Federation Head and could be very helpful in terms of
privacy, because this aggregation will avoid the leaking of

! Merriam-Webster Online: Dictionary and Thesaurus www.merriam-webster.com
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personal information that may be contained in the data that are
aggregated.

time is represented by one Virtual RERUM Device. This is a

RERUM A RERUM Device (RD) is a piece of hardware and software (incl. | RERUM

Device (RD) the Operating System) that is equipped with intelligence. It has

or RERUM one or more Resources that the RERUM Device is able to either

Smart Object | fill with interpreted and pre-processed sensory data or able to
read and interpret the commands that are given. The RERUM
Device has some Sensing, Tag or Acting elements directly
attached to it.

RERUM The specific topology of software components on the physical | IoT-A/

Deployment | layer, as well as the physical connections between these | RERUM
components.

RERUM A RERUM Gateway is a physical device that plays the role of a | RERUM

Gateway network gateway interconnecting different RERUM networks.
Furthermore, the RERUM Gateway is responsible for managing
the RDs that are connected toit. In this respect it can also include
various Middleware functionalities.

Resources Resources are software components that provide some | IOT-A On-
functionality. When associated with a Physical Entity, they either | device
provide some information about or allow changing some aspects | Resources
in the digital or physical world pertaining to one or more Physical
Entities. In general, they are typically sensor Resources that
provide sensing data or actuator Resources, e.g. a machine
controller that effects some actuation in the physical world.

Sensing An (embedded) device that perceives certain characteristics of | RERUM

element the real-world environment (Physical Entities), translating a
change into an electrical signal.

Sensor * A smart device that includes one or several sensing | |+ A

elements and is able to translate the electrical signal of

the sensing elements to some type of information

(digital representation) with specific value and semantic.
(I6T/RERUM) e Software component enabling interaction with IoT-A,
Service resources through a well-defined interface, often via the | Rerum

Internet.

Smart Object | See RERUM Device RERUM

Virtual Entity | The digital synchronized representation of a Physical Entity. loT-A

(VE)

Virtual A Virtual RERUM Device (RD) is a digital representation of a | RERUM

RERUM RERUM Device. The same one physical RERUM Device at one
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Device (VRD) | software artefact, like a Virtual Entity (VE), but represents a
RERUM Device (RD).

User A Human or a software that interacts with a system for | Based on
transferring information. loT-A
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1 Introduction

1.1 Objectives of this document

This document presents the indoor experimental results of the RERUM project [RERUM] for evaluating
the security, networking and scalability of the system in controlled laboratory environments running
small experiments.

More specifically, this deliverable qualitatively and quantitatively assesses the performance gains of
the protocols and algorithms that are developed within WP2-WP4. To this aim, the evaluation results
on conducted proof-of-concept controlled lab-experiments are presented. The results of these in-lab
tests will be used to improve the components tested, and the conclusions will be applied in the first
phase of the live trials in the pilot cities. In parallel to the first phase, the lab experiments will continue
to improve those components with some performance issues, and improvements will be provided in
M30 just before the start of the second phase of the live trials.

1.2 Intended audience

This document is intended primarily for the RERUM partners, namely the researchers and developers
that are involved in the technical work packages to conduct the proof-of-concept experiments and
trials, and the pilot cities that will execute the use case trials. However, we believe that the framework
can be of interest for researchers and smart city services developers, and the outcomes from the lab
experiments and the trials will certainly be of interest for a wider audience, as they will demonstrate
the feasibility of the RERUM architecture applied to a live smart city environment.

1.3 Position within the project

1.3.1 Relation with other tasks and WPs

This deliverable (D5.3) presents experimental performance evaluation of the protocols, algorithms and
individual system modules that are developed within WP2-WP4 (see Figure 1). The evaluation
methodology defined in Task 5.1 is used for the performance evaluation activities. Moreover, it
received the developed software and hardware components from T5.2.

- A

WP5

WP2

Task 5.1
D21 — Trial Scenarios
Use-cases definition and validation \
and threat analysis

Task 5.2
Pilot Use-case
Implementations e

Task 5.3 D5.3

Proof-of-concept ] 3
laboratory

expariments

Ny

Laboratory
Evaluation Results

>
/
/

Task 5.4 -

Proof-of-concept /
Field Trials —
Heraklion

v
Task 5.5 e
Proof-of-concept 1=
Field Trials —
Tarragona

- J

Figure 1: Position of T5.3/D5.3 within RERUM.
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The outputs of the experimental campaign of D5.3 aim at evaluating the performance of the individual
system modules in order to identify any potential issues, and to prepare them for the real-world trials
in tasks T5.4 and T5.5.

1.4 Document structure

This deliverable is structured as follows:

Section 2 demonstrates the security lab trials on RERUM Devices (RDs). More precisely, Subsection
2.1 presents the runtime-, memory- and communication-overhead of signing and verifying the
message payload with ECC standard signatures. Subsequently, subsection 2.2 evaluates the energy
efficiency of ECC based payload signatures on RDs. Subsection 2.3 reports on, the runtime-,
memory- and communication-overhead of signing, verifying and messages with malleable
signatures, while subsection 2.4, evaluates the energy efficiency of malleable signatures.
Subsection 2.5 demonstrates the handshake time for Lightweight Datagram Transport Layer
Security (DTLS). Furthermore, Subsection 2.6 evaluates the computation time of the MS NUMS
elliptic curves, while in Subsection 2.7 the performance evaluation of a practical Leakage-Resilient
Message Authentication Code (MAC) scheme is shown. Finally, in Subsection 2.8 the evaluation of
the RSSI-based Compressed Sensing (CS) encryption keys is presented.

Section 3 shifts focus on the evaluation of networking lab trials. In particular, the section presents
results on the performance of: i) the adaptive CS-based data gathering (Sec. 3.1), ii) the sensor self-
monitoring component (Sec. 3.2), iii) the lightweight spectrum sensing component (Sec. 3.3), iv)
the Cognitive Radio (CR)-based gateway (Sec. 3.4) and v) the BMFA multicast forwarding algorithm
for 6LOWPANS (Sec. 3.5).

Section 4 discusses lab trial testing of the traffic monitoring Use-Case. More specifically, in 4.1 the
results of the experimental evaluation of the battery drain of the participatory sensing android app
are presented, while in 4.2 the evaluation of the participatory sensing app in terms of CPU usage
is demonstrated. Subsection 4.3 evaluates the scalability of the server side implementation of the
smart transportation use case. Furthermore, in 4.4 demonstrates the experimental evaluation how
the stability of the android app is affected by the sampling period. Finally, Subsection 4.5 explores
the usage of the SNR measurement precision for the RERUM android application.

Section 5 concludes the deliverable with an overview of the key results.
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2 Security Lab Trials

This section documents experiments that were undertaken in order to assess the cryptographic
capability of RERUM devices and their suitability for RERUM-devised security mechanisms.

2.1 Overheads of signing and verifying with ECC

In this section we investigate the feasibility of the RERUM approach to bring cryptographically strong
digital signature capabilities into smart devices. Encouraging results indicate that we can have end-to-
end authenticity and integrity protection even at sensor level in the loT.

We use the term “standard signatures” to refer to classic signature schemes based on Public Key
Cryptography Standards (PKCS) [RSA12] or the Digital Signature Algorithm (DSA) [DSS13]. These involve
a standard cryptographic hash function (SHA256 [SHAZ2], or better) and operations of an asymmetric
cryptographic primitive, like Elliptic Curve Cryptography (ECC) as those are better suited for
constrained devices than RSA-based algorithms. Therefore, this section focuses on experiments that
target the evaluation of Runtime-, Memory-, Communication-overhead of Signing and Verifying
Message Payloads with ECC signatures.

To generate ECC based signatures requires, as with all asymmetric based digital signature schemes,
two distinct keys, one called secret key for signature generation and another one, called public key,
for signature verification. The secret key must be generated, stored, and used, such that the
confidentiality is not violated at any time. RERUM assumes (see [RD3.1]) that this is a per device key,
so that key extraction key, would give the attacker only the key to impersonate that single device. For
the tests conducted in the laboratory experiments at UNI PASSAU, we did not address the key
distribution problem. For now we assumed that the key-pair was generated on the RE-Mote and the
corresponding public key was transported to the communication partner via a pre-established
authenticated / integrity protected channel.

For public key transport it is important that the device receiving the RE-Mote's new public key needs
to have gained assurance that the public key belongs to a certain authentic RE-Mote. This can be
addressed at some earlier stage or during the communication. We assume this being done as part of
the secure credential bootstrapping [RD3.1].

After a successful key set-up, we assume the following:

e RE-Mote A possesses its own secret signature generation key.

e RE-Mote A possesses both public signature verification keys: Its own and the
verification key of B.

e Device B possesses its own secret signature generation key.

e Device B possesses both public signature verification keys: Its own and the verification
key of RE-Mote A.

211 Implementation details

An initial manual search for existing crypto libraries for Contiki and suitable to run on an ARM Cortex-
M3 platform was performed in July 2015. The following libraries were selected as candidates for use
on the RE-Mote and further investigation:

1. TweetNaCl library (Curve25519 and Ed25519) [BGJLSS15]

2. Implementation by Pifiol Oriol (Secp256r1) [P14]
3. MicroECC library (Secp160r1, Secp192r1, Secp224rl, Secp256k1, Secp256rl) [mECC]

We ported these libraries to Contiki to run on the RE-Mote [M16]. The ports still lack any RE-Mote
specific acceleration, like use of Tl's crypto co-processor. Therefore, there is potential for
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improvement. The results obtained measuring the performance and overhead of those libraries are
presented in the next section.

The more common curves suggested by the National Institute of Standards and Technology (NIST) have
been severely criticised [BCCHLN14]. As it might be undesired the use insecure curves, we suggest to
use curves like Curve25519 and the signature algorithms Ed25559 [BGJLSS15] at later stages. Just
recently those curves have started being considered for standardisation in RFC7748 [RFC7748] and this
may lead to their more widespread adoption. In RERUM, we therefore ported and benchmarked the
Curve25519 on the Zolertia Re-Mote device [M16], which regarding the general cryptographic design
is close to the ones suggested in RFC7748.

Therefore, the chosen implementations that have been ported to Contiki and tested on the RE-Mote
are Curve25519 and Ed25519 provided by the TweetNaCl-library, Secp256r1 by Pifiol Oriol (Secp256r1)
and ECDSA on five standard curves provided by the MicroECC library. Each implementation provides a
number of different parameters which can be adjusted to improve performance. The specific
adjustments for each implementation, also the different options and their adjustments are as follows:

e Curve25519 and Ed25519 — TweetNaCl: TweetNaCl was implemented by Daniel J. Bernstein
et.al.. It is a crypto library that supports ECDSA based on Curve25519 and Ed25519 [BGJLSS15].
The library is generic, but some of the design choices target 32bit machines. The library does
not need any dynamic memory allocation nor has other library dependencies. Another aspect
is that the implementation is side channel attack resistant [BGJLSS15, L15b].

e ecp256rl Pifiol Oriol: Pifiol’s implementation permits the use of different coordinate systems,
curve parameters and architectures. The following options are available for coordinate
representation:

e affine coordinates,

e homogeneous coordinates, and

e jacobian coordinates.
The reason behind using different coordinate systems is that a costly operation in one
coordinate system may be a low-cost operation in another. Pifiol gained best performance by
using a homogeneous coordination system. This implementation supports the use of a sliding
window, instead of a fixed window size, for point doubling computation. Another feature of
this implementation is the use of a different word size for point representation; therefore, it
is possible to configure the library for both 16-bit and 32-bit word lengths [P14].

e  MicroECC: MicroECC implements ECDH and ECDSA on five standard curves. It has a great
flexibility and it can be adjusted to use inline assembly (ASM) for ARM platforms. The library is
implemented in C and supports the following five standard curves: Secp160rl, Secp192r1,
Secp224rl, Secp256k1 and Secp256rl. The internal computation is safe against timing attacks.
The MicroECC library can optionally be optimized for either speed or code size.

2.1.2 Experimental setup

The implementation was realized on the Zolertia RE-Mote device with an integrated microcontroller
from Texas Instruments. Our experiments run on top of Contiki OS configured with a disabled network
stack. This was necessary to eliminate interrupts and other side effects that might interfere with time
overhead measurements. Each implementation used its own configuration with implementation-
specific arguments.
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2.1.21 Curve specific test variants and challenges overcome

e Curve25519 and Ed25519 — TweetNaCl: The implementation of Ed25519 uses Sha512 to
generate message hashes. The TweetNaCl implementation created wrong keys and signatures
due to stack overflows. To fix this issue, Contiki’s stack size was increased from 2048 to 4096
bytes. To meet the correct calculation behaviour, the type definitions used by TweetNaCl were
adjusted to unsigned integers (8-, 32-, and 64-bit).

e Secp256rl - Pinol Oriol was originally designed for Contiki. We tested with the all three
different coordinate systems [P14]. The implementation uses Sha256 to hash messages. In
addition, differences between 16-bit and 32-bit calculations were evaluated.

e MicroECC was adapted to Contiki by us. It excludes hashing, which is therefore not part of the
measurement (we applied Sha256). For each of the curves there are three ARM configurations,
that use different inline assembly code optimizations:

e no assembler code,
e assembler code optimized for small size, and
e assembler code optimized for fast execution.

2.1.2.2 ECDSA adjustments
For ECDSA, the several processing steps are grouped into the following three main tasks:

e key generation (key-gen)
e signature generation (sign)
e signature verification (verify)

In the key generation and signing process, the pseudo number generator (PRNG) is replaced with an
empty function to avoid influences in the test. For all curves, the used hash function is included into
the measurement, but its timing is explicitly reported for each task. For reasons of comparison we set
the length of the message to sign to 15 bytes, although the influence of the hash function is minimal
(in the region of a few ms).

2.1.2.3 Memory-overhead computation

To compute the static code size of the project, all the dependencies to the crypto libraries were first
removed. Afterwards the Executable and Linkable Format (elf) file was stripped and the resulting size
measured. For measuring, we used the overhead tools from the existing gcc-arm-none-eabi toolchain.
Finally we compared the measured size to the original project size. The elf file represents a compiled
and already linked executable, which can be flashed on the RE-Mote device.

2.1.2.4 Runtime computation with timelib

We developed our own tool called timelib for measuring the timing. The timelib-tool consists of
multiple useful functions to automate the measurement process and standardize the output for other
tools. In timing mode, the RE-Motes internal timer prints the time spent for each task to standard
output (STDOUT). In the power-trace mode, the start/stop points are marked by activating the LEDs
for the corresponding task and glow for 35ms at the beginning and end of each task. This is
recognizable on the power-trace. It is configurable at compile time.

For runtime measurements, we used the internal real-time clock of the CC2538 chip, which runs at
32.768 kHz [CC2538]. The developed timelib-tool analyses the output and computes the average over
several iterations to the corresponding diagram as shown in Figure 2:

Page 24 of (104) © RERUM consortium members 2016



Deliverable D5.3

RERUM FP7-ICT-609094

1 —mm s ——— oo ——— - TimeLibTasks -----------------—--————--—---

» occurrence: 24 time 74508 ms avg: 3104 ms |hash| |crypto_sign_keypair|

3 occurrence: 24 time 84447498 ms avg: 3518645 ms |crypto_sign_keypair|

2 occurrence: 24 time 74599 ms avg: 3108 ms |hash| |crypto_signl

s occurrence: 24 time 84782398 ms avg: 3532599 ms |crypto_sign]|

s occurrence: 24 time 75823 ms avg: 3159 ms |hash| |crypto_sign_open|

7 occurrence: 23 time 162098438 ms avg: 7047758 ms |crypto_sign_open|

8 occurrence: 23 time 47779466 ms avg: 2077368 ms |alice key generation|

s occurrence: 23 time 47778094 ms avg: 2077308 ms |bob shared key
generation|

o occurrence: 23 time 47779562 ms avg: 2077372 ms |bob key generation|

1 occurrence: 23 time 47780167 ms avg: 2077398 ms |alice shared key
generation|

Figure 2: Timelib aggregation output.

We observed each implementation over a period of 10 minutes performing the measurements
multiple times for each step of the signing process. The time for each task is aggregated and the

average is taken.

2.1.3 KPIs

For ECDSA with TweetNaCl, with Secp256r1 by Pifiol, with MicroECC, and as well with MicroECC on the
RE-Mote with Contiki, we consider the following evaluation criteria defined in Deliverable D5.1

[RD5.1]:
e Crypto-Runtime-Overhead (AL.PE.3), and

e Crypto-Memory-Consumption-Overhead (AL.EF.3)

For MicroECC on Contiki we also evaluate criterion Crypto-Communication-Overhead (AL.EF.4).

2.1.4 Performance evaluation

Here, we illustrate and compare the measured results for the implementations TweetNaCl, sep256r1

and MircoECC, in time and size.

2.1.4.1

Runtime and memory overhead of ECDSA with TweetNaCl

TweetNaCl accomplished the key generation in 3.518s, signature generation in 3.532s, and verification

in 7.047s, as shown in Table 1.

Table 1: TweetNaCl ECDSA timing results.

implementation | keygen

sign

verify

TweetNaCl 3.518s

3.532s

7.047 s

Figure 3 shows the graphical presentation of the timing values of different operations measured.
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Time (s)

Figure 3: Average time for TweetNaCl over 10 minutes [M16].
The size of the TweetNaCl implementation is shown in Table 2. TweetNaCl supports ECDH and ECDSA.

Table 2: TweetNaCl static code size results.

Configuration static code size
TweetNaCl 6776 bytes
2.1.4.2 Runtime and memory overhead of ECDSA with Secp256r1 by Pifiol

The results of Oriol Pifiol documented in [P14] could be confirmed. The best performing configuration
was with the Jacobian coordinate system without sliding window in 32-bit mode. This implementation
was tested with twelve configuration permutations (three possible coordination systems, with or
without sliding windows, using 16- or 32bit calculations). In all variants the differences in the
configuration with and without sliding window are either negligible or a disadvantage of 100ms in
average. Also on the RE-Mote the 32-bit variant should be preferred because it achieves the best
results in terms of runtime with ECDSA. Noteable is the difference in runtime between shared key
generation and public key generation, which is also visible in the power trace.

Time measurements indicate that for ECDSA the configuration with Jacobian coordinates, 32-bit
words, and without sliding window is also the fastest with this implementation. For further details, see
Table 3.

There is no difference in the static code size of the implementations between with and without a sliding
window, but the smallest size could be accomplished by configuring the affine coordinate system, on
32-bit at the expense of speed. The fastest configuration has the largest static code size with a
difference of 1418 bytes in comparison to the smallest. All static code sizes measured are presented
in Table 4.
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Table 3: Pifiol ECDSA timing comparison.

configuration keygen sign verify

affine 16 bit 45.871s | 47.098s | 93.647 s
affine 16 bit sliding window 46.287 s | 47.086s | 90.900 s
affine 32 bit 26.644s | 26.420s | 52977 s
affine 32 bit sliding window 26.712s | 26.503s | 52.832 s
homogenous 16 bit 29.797s | 30.813s | 60.203 s
homogenous 16 bit sliding window | 29.586 s | 29.804 s | 57.981 s
homogenous 32 bit 10.829s | 10.820s | 21.449 s
homogenous 32 bit sliding window | 10.842s | 10.858 s | 21.798 s
jacobian 16 bit 182945 | 18.270s | 36.476 s
jacobian 16 bit sliding window 18.224s | 18.184s | 36.333 s
jacobian 32 bit 6.425s | 6.439s [ 13.075s
jacobian 32 bit sliding window 6.521s | 6.588s | 13.175s

Table 4: Pifol size comparison.

configuration static code size
affine 16 bit 6899 byte
affine 16 bit sliding window 6899 byte
affine 32 bit 6915 byte
affine 32 bit sliding window 6915 byte
homogenous 16 bit 8153 byte
homogenous 16 bit sliding window 8153 byte
homogenous 32 bit 8153 byte
homogenous 32 bit sliding window 8153 byte
jacobian 16 bit 8333 byte
jacobian 16 bit sliding window 8333 byte
jacobian 32 bit 8317 byte
jacobian 32 bit sliding window 8317 byte

2143 Runtime and memory overhead of ECDSA with microECC

We present the measured runtime and static code size of this library in comparison to ECDSA. There
are three ARM configurations with different assembly (ASM) code optimizations for each of the curves.
Optimisations can be either focused on small code size or fast execution. Optimisations can also be
disabled altogether.

MicroECC shows how fast the differences between a generic implementation and a platform-
dependent assembler-optimised version can be. For example, Secp224r1 without any optimisation
runs in 0.593ms, while the platform-dependent fast version only took 0.262ms in average for these
results. This is a notable advantage of 0.331ms, which amounts to a reduction of more than 50%.

In case of MicroECC with ECDSA, the results of the various curves and optimisations for the tasks of
key generation, signing and verification show significant differences. Moreover, although the
verification process was time-consuming, the difference between sign and verify rests on 9.7%. In
comparison to TweetNaCl the performance improvement is here at approximately 50%. The high
security key length Secp256k1 is about 20% faster than Secp256r1.

Table 5 shows the experimental results of the investigated curves. Applied ASM code optimisation
(labelled fast, small and none) is documented in the “config” column. Investigated tasks were key
generation, signing and signature verification (labelled key gen, sign and verify).
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Table 5: MicroECC ECDSA timing comparison.

curve config | key gen | sign verify

secp160r1 fast | 0.177s | 0211s | 0.225s
secp160r1 | none | 0.318s | 0.356s | 0.386 s
secp160r1 | small | 0.260s | 0.296s | 0.320 s
secp192ri fast | 0.181s | 0.206s | 0.224 s
secp192r1 | none | 0.409s | 0.437s | 0.485s
secp192r1 | small | 0.305s | 0.333s | 0.368 s
secp224ri fast | 0.262s | 0.297s | 0.324s
secp224r1 | none | 0.593s | 0.630s | 0.700 s
secp224r1 | small | 0.438s | 0.475s | 0.525s
secp256k1 | fast | 0.420s | 0.467s | 0.476s
secp256k1 | none | 0.925s | 0.972s | 1.010s
secp256k1 | small | 0.665s | 0.714s | 0.737 s
secp256ri fast | 0.489s | 0.537s | 0.595s
secp256r1 | none | 1.129s | 1.177s | 1.320 s
secp256r1 | small | 0.805s | 0.855s | 0.957 s

The general difference of the code size between a curve with a small key size and one with a more
secure key size is smaller than expected. Between the smallest curve (Secp160rl) and the largest
(Secp256r1) are only 168bytes. In addition, code size savings between the versions optimised for code
size compared to those without are static an improvement of around 200 bytes. Table 6 shows
MicroECC size comparison, focusing on the static code size of the different configurations.

Table 6: MicroECC size comparison.

curve config | static code size
secp160r1 | none 4679 byte
secp160r1 | small 4522 byte

secp160r1 | fast 5301 byte
secp192r1 | none 4223 byte
secp192r1 | small 4042 byte
secp192r1 | fast 5225 byte
secp224r1 | none 4311 byte
secp224r1 | small 4130 byte
secp224r1 | fast 5825 byte
secp256k1 | none 4227 byte

secp256k1 | small 4050 byte
secp256k1 | fast 6301 byte
secp256r1 | none 4531 byte
secp256r1 | small 4354 byte
secp256r1 | fast 6605 byte
2144 Runtime and memory overhead of MicroECC on the RE-Mote with Contiki

Here, we focused on ECC signatures on the Secp192r1 curve using the MicroECC library running on a
RERUM device with Contiki. Before the message was signed, it was hashed with the built-in, hardware-
accelerated SHA256 function of the RE-Mote’s CC2538 chip. Afterwards the generated signature was
encoded into the BASE64URI format.

The runtime overhead of the signing process was determined by using the integrated timer of the
CC2538 chip. These measurements were performed multiple times for each step of the signing process.
It turned out that the SHA256 hashing and the BASE64URI encoding had a minimal impact, that did not
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significantly affect the runtime: The total duration of hashing and encoding was less than 1ms. The
average overhead was 216ms for the Secp192r1 signature utilizing MicroECC as shown in Table 7.

Table 7: Runtime of average execution time.

Execution time overhead average Execution time [ms]

With MicroECC signatures (curve Secp192r1) 216

The measurement of execution overheads for sending messages with or without signatures, was
performed by additionally measuring the transmission time for the respective messages and further
adding these results to the specific execution time of the crypto algorithms. The results are shown in
Table 8.

Table 8: Execution time overhead (in ms) for sending messages involving signatures.

Time of Tasks in ms Message Signing Total Overhead
transmission interaction
Without signatures 102 - 102 -
With signatures 186 216 402 300

The memory-overhead for ECC signatures on the RE-Mote results from the MicroECC library, the
BASE64URI encoding algorithm and additional variables like the signing buffer. To measure the
overhead we used tools from the gcc-arm-none-eabi toolchain. The compiled firmware image for the
RE-Mote was first stripped, then the size was measured using the gcc-arm-none-eabi-size tool.

Comparing the measured sizes of the full firmware image, enabling the signatures leads to a total
memory overhead of 5.71 kilobytes. The biggest part of the overhead comes from the .text section
stored in the device’s ROM which contains the MicroECC and base64 libraries. The .data section is
almost not affected and the increased size of the .bss section results from the additional, uninitialized
buffers, such as the signature buffer. This more detailed investigation resulted in the values shown in
Table 9.

Table 9: Memory Overhead of standard signatures.

Memory Memory [bytes]
consumption .text section .data section .bss section total
With signatures 58895 1706 12765 73366
Without
. ithou 53315 1702 12497 67514
signatures
Overhead 5580 4 268 5852

A more detailed analysis of the runtime and memory overhead including a comparison with Malleable
Signatures is found in Section 2.3.5.

2.1.4.5 Communication overhead of ECDSA with MicroECC on the RE-Mote with Contiki

The actual payload sent by the RERUM Device is a JavaScript Object Notation (JSON) message
containing the measurement ID, the measured value, and the signature. An example of such a message
is depicted in Figure 4. The length of this message is 125 characters, but can vary, depending on the
size of the measurement ID and the BASE64URI encoding. The same message without integrity
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protection contains no signature (see the red marked area) with a resulting length of 46 characters.
Hence, the overhead of sending a signed message is 79 characters (bytes).

{
"measurement_id":42,
"signed_chip_temp":27800,
["signature":"TyJuOhKWtTZMiQ+hI7vkXqLjoS1rU2TI46EpY6EpalNkvkXvReouOhKWtT81bjoS']
}
Figure 4: Standard ECC signed message.
2.2 Energy efficiency of ECC-based payload signatures

This section continues the evaluation of ECC-based signatures that was presented in Section 2.1. We
now shift our focus to the evaluation of the energy efficiency of the same signature schemes.

2.21 Implementation details

We used the same libraries as those used for performance measurements:

1. TweetNaCl library (Curve25519 and Ed25519)
2. Implementation by Pifiol Oriol (Secp256r1)
3. MicroECC library (Secp160r1, Secp192r1, Secp224rl, Secp256k1, Secp256r1)
4. MicroECC in the RERUM Device for Contiki
2.2.2 Experimental setup

The power-trace is generated by placing a circuit between the USB-power-supply and the RE-Mote. An
analog-digital-converter (AD-converter) of type MCP3008 [B12] was used to do the power
measurements. The converter was triggered by a Raspberry Pi over the Serial Peripheral Interface (SPI).
The MCP3008 is supplied by 3.25V and has a resolution of 1024bits, which results in a maximal
resolution of 3.25V 1024bit = 0.0031738 bit V = 3.17mV bit [MTO05].

The AD converter needs between 2.5 milliseconds (ms) and 10 milliseconds per measurement. Another
limitation is that the script that reads those values, prints the current system time, which has a
resolution of 10 milliseconds. The output of the Raspberry Pi below illustrates this problem. For this
reason, the minimum size of a task cycle is limited to 10 ms.

We compute the voltage, current, and power of the RE-Mote as follows:

Ure—more =Ur1 +Ups = 2-Ugy =2-Uyp,

_ _Urs _Uapo
Ipe—more = IRy = —— =
Ry Ry
2
p UADO UADU
R3 = UAD(J T T
Rsy R34
2
U, ad0 Uad()
Pre_vore = Ure—morE - Ige—more — Pryy = 2 - Ugar - - ==
R3y  Ray

As mentioned previously, the start/stop points are marked by activating the LEDs. The high power
drain of LED is used as a marker. To calculate the energy drain for a specific function the power-trace
is checked for the trigger of the LED. Then for each nearby measuring point the average over 10ms is
computed and multiplied by 10ms to get the demand in Wms. Only measuring points within the same
time span with an accuracy of 10ms are taken into account. Of course we always check if the next
measuring point has the value of the led-marker, if so it will not be taken into account for the average
calculation. Afterwards the sum of all average measuring points between the two markers will be used
to calculate the total consumption of a given task. For each task the tests are running several times
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until a certain time limit is reached. We used the average value of several runs as the following
Equations show:

crypto_sign_keypair_begin

Wiun_task = Z Wge—motE

crypto_sign_keypair_end

and

2711 I'Vn,w.wrl

n

I’Vtota.i,task =

Figure 5 shows the summarised power values and detailed information like voltage, current, power,
time, and the difference between the time measured with our timelib-tool and the time calculated out
of a power trace for each task.

1 task: runs 2 crypto_sign_keypair timelib: 3.524066 s powertrace:
3.525000 s diff 0.000934 s

2 U: 4.809504 V I: 0.016809 A P: 0.080842 W W: 0.285370 Ws

3 task: runs 2 crypto_sign timelib: 3.538031 s powertrace: 3.530000 s
diff 0.008031 s

4 U: 4.809903 V I: 0.016734 A P: 0.080488 W W: 0.284524 Ws

5 task: runs 2 crypto_sign_open timelib: 7.058435 s powertrace: 7.055000

s diff 0.003435 s

6 U: 4.809081 V I: 0.016840 A P: 0.080970 W W: 0.571646 Ws

7 task: runs 1 alice key generation timelib: 2.080548 s powertrace:
2.090000 s diff 0.009452 s

8 U: 4.809073 V I: 0.016876 A P: 0.081144 W W: 0.169591 Ws

9 task: runs 1 bob shared key generation timelib: 2.080554 s powertrace:

2.080000 s diff 0.000554 s

10 U: 4.809495 V I: 0.016828 A P: 0.080931 W W: 0.169146 Ws

11 task: runs 1 bob key generation timelib: 2.080755 s powertrace:
2.070000 s diff 0.010755 s

12 U: 4.810039 V I: 0.016749 A P: 0.080561 W W: 0.167567 Ws

13 task: runs 1 alice shared key generation timelib: 2.080316 s
powertrace: 2.080000 s diff 0.000316 s

14 U: 4.809295 V I: 0.016836 A P: 0.080967 W W: 0.169220 Ws

Figure 5: Power analyzer sample output.

2.2.2.1 Power measurement

The power measurement is done with a AD converter MCP3008 [MTO05]. The python scripts and wiring
diagrams, are based on the work of Erik Bartmann [B12]. The current voltage was measured at ADO
and AD1. The Raspberry Pi communicates with the MCP3008 over Serial Peripheral Interface (SPI). The
current voltage from ADO or AD1 is read by a python script and directly written into a file on the
Raspberry Pi.

The MCP3008 has a resolution of 3.17mV/bit in a range from 0V to 3.25V. A notable limitation is that
the RE-Mote shuts down if the current is too high. In addition, a high current shortens the lifespan of
the resistors. In the actual measurement, two resistors with a value of 10Q in parallel delivered the
best resolution for the low current consumption of the RE-Mote:
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1 1 1 1 1

Rapo Rz Ry 1022 1012

The output of the script starts, by printing the arguments for the resistor (R3, R4) value and the sleeping
time, afterwards the actual measurement lines are printed. A measurement line consists of the current
timestamp, and the second time value (that was initially planned to measure the time for the process
of reading over the SPI, but showed not trustworthy enough). The third value is the current voltage at
the measure point AD1 and the last value at ADO.

Figure 6 shows a simplified construction of the circuit. Through the resistors (R1, R2) the current
voltage is divided by half and can be measured at AD1. Through the resistors R3 and R4 the voltage
between GND and ADO can be measured and the current drain of the RE-Mote is calculated.
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Figure 6: Wiring diagram [M16].

Figure 7 shows the finished measurement utility as a USB stick connected to a Raspberry Pi model B.

Figure 7: USB stick to measure energy consumption of the RE-Mote connected to a Raspberry Pi
[M16].
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A more detailed view of the actual wiring is shown in Figure 8. The capacitor and R5 stabilize the power
supply for the MCP3008 from the Raspberry Pi, in order to gain a more accurate reading at the
measurement points.

5 R5 1 5
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Figure 8: Detailed wiring diagram [M16].
2.2.2.2 Powertracer

Over the USB output, the timelib generates a timing trace, saved as a log file. In a second run the
Raspberry Pi generates the power data for the test. To automate the process of analysing these traces,
we developed the powertracer-tool. It consist of four stages: (i) first, the given traces can be read, (ii)
split into tasks, then (iii) synced with the power data and, finally (iv), the statistics are calculated for
the given tasks.

There are two kinds of trace: first the timelib trace which is the output over the USB device (see Figure
9). It consists of the different task names and their duration. The second trace is the power trace, which
consists of the voltage on the different measurement points and the marker positions of the glowing
LED marker points (see Figure 10).

1 start: crypto_sign_keypair
2 innerStart: hash

3 innerStop: 3082 us hash
2 stop: 3521148 us crypto_sign_keypair

Figure 9: Sample timelib trace from Curve25519 crypto_sign_keypair.

1 ohm: 5

2 sleeptime: O

s now: 1436314021.22 time: 0.00122785568237 AD1 768.0 ADO 27.0
4 now: 1436314021.22 time: 0.00127983093262 AD1 768.0 ADO 26.0

Figure 10: Sample power trace.

In a first step, the power trace is searched for the string “PowerEvents”, which marks the power
consumption of the LEDs when switched on. Afterwards, a filter is applied to normalize the peaks. For
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example, events which are not possible since their occurrence is too short, are split depending on the
time range where they occur (Figure 11).
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Figure 11: Power event concatenation before and after.

A “PowerTask” represents the time and power usage of a given task, e.g. of signing a message. After
the power events are filtered, the “PowerTasks” are now recognizable and comparable to the tasks
out of the timelib trace. The “PowerTask” and the tasks triggered by the timelib can be mapped to a
“TimeLibTask” to accumulate the measurement information from the power trace to the information
of the RE-Mote console output. Than the different runs of a task are summarized to create the average
for given measurement. The difference between data of two sources is also an indicator about how
credible the measurement of the different methods is. The “TimelibTask” results in the following
information:

e name (Timelib)

e time (Timelib)

e time (PowerTrace)

e power data (PowerTrace)

2.2.3 KPIs

In this experiment, we measure the Crypto Energy Consumption (AL.EF.5) as defined in Deliverable
D5.1 [RD5.1] for ECDSA with TweetNaCl, with Secp256r1 by Pifiol, with MicroECC, and as well with
microECC on the RE-Mote with Contiki.

2.2.4 Performance evaluation

Here we illustrate and compare the power consumption for the implementations TweetNaCl, sep256r1
and MicroECC, in time and size.

2.2.41 Power consumption of ECDSA with TweetNaCl

The graph in Figure 12 shows a power trace of an ECDSA signature followed by an ECDH signature
(both from the TweetNaCl implementation).
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Figure 12: Average power for TweetNaCl [M16].

The measured power values for the ECDSA algorithm are shown in Table 10.

Implementation Curve keygen sign verify

TweetNaCl ed25519 0.332 0.333 0.665

Table 10: TweetNaCl ECDSA power consumption.

2.24.2 Power consumption of ECDSA with Secp256r1 by Pinol

The data-dependent functions show differences in the power trace for the same kind of tasks. For the
tasks that run more than 29 seconds, the power trace shows inaccuracies, due to the then insufficient
measurement span of 10 minutes to accumulate sufficient data to calculate an meaningful average
value. Another point worth to mention is the runtime of longer tasks. For example: In the configuration
affine coordinates with 16-bit the task alice key generation took in the first run 43.21 seconds, but in
the second run 46.3 seconds. This could also be verified in the powertrace.

An explanation would be the data dependent code inside of the Pifiol implementation, where the run
of a similar task (alice key generation 4.602 watt seconds, bob key generation 4.550 Ws) results in
different power usages, even though they are using the same functions but with different data. Table
11 shows measured power values for an ECDSA with different configurations.
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configuration key gen signing | verification
affine 16 bit 4407 Ws | 4.550 Ws | 9.289 Ws
affine 16 bit sliding window 4528 Ws | 4544 Ws | 9.277 Ws
affine 32 bit 2712Ws | 2709 Ws | 5494 Ws
affine 32 bit sliding window 2569 Ws | 2542 Ws | 5073 Ws
homogenous 16 bit 2902 Ws | 2905Ws | 5.784Ws
homogenaous 16 bit sliding window | 2.874 Ws | 2.878 Ws | 5.829 Ws
homogenous 32 bit 1.050Ws | 1.048Ws | 2.112Ws
homogenaous 32 bit sliding window | 1.045Ws | 1.032 Ws | 2.094 Ws
jacobian 16 bit 1.763Ws | 1.753Ws | 3.473 Ws
jacobian 16 bit sliding window 1.733Ws | 1.759Ws | 3.518 Ws
jacobian 32 bit 0.632Ws | 0.638Ws | 1.276 Ws
jacobian 32 bit sliding window 0.625Ws | 0.623Ws | 1.248 Ws

Table 11: Pifiol ECDSA power comparison.

2.24.3 Power consumption of ECDSA with microECC

The power usage for MicroECC is analogue to the already presented results, and it confirms the
measured timings using our timelib-tool. In the powertrace for ECDSA of MicroECC we can also
measure differences between the three tasks, but for Secp256rl1 they are marginal and rest up on a
difference of 6mWs. Table 12 presents the results of the powertrace.

curve config | key gen sign verify

secp160r1 fast | 0.016 Ws | 0.020 Ws | 0.021 Ws
secp160r1 | none | 0.030 Ws | 0.033 Ws | 0.036 Ws
secp160r1 | small | 0.024 Ws | 0.027 Ws | 0.030 Ws
secp192ri fast | 0.016 Ws | 0.019 Ws | 0.020 Ws
secp192r1 | none | 0.037 Ws | 0.040 Ws | 0.044 Ws
secp192r1 | none | 0.028 Ws | 0.031 Ws | 0.034 Ws
secp224ri fast | 0.024 Ws | 0.027 Ws | 0.029 Ws
secp224r1 | none | 0.055Ws | 0.058 Ws | 0.065Ws
secp224r1 | small | 0.041 Ws | 0.044 Ws | 0.049 Ws
secp256kl | fast | 0.038 Ws | 0.042 Ws | 0.043 Ws
secp256kT1 | none | 0.085Ws | 0.089 Ws | 0.093 Ws
secp256k1 | small | 0.064 Ws | 0.069 Ws | 0.071 Ws
secp256ri fast | 0.044 Ws | 0.048 Ws | 0.054 Ws
secp256r1 | none | 0.105Ws | 0.109 Ws | 0.123 Ws
secp256r1 | small | 0.075Ws | 0.080 Ws | 0.089 Ws

2.2.4.4

Table 12: MicroECC ECDSA power comparison.

Power consumption of ECDSA with MicroECC on the RE-Mote with Contiki

Energy measurements for this task were taken utilizing a special hardware circuit developed by Max
Mossinger [M16]. This circuit is placed between the RE-Mote and a USB-power-supply. The actual
metering is performed by the circuit’s MCP3008 D/A-Converter monitored by a Raspberry Pl over a SPI
interface. Both, the current voltage, as well as the current impedance of the RE-Mote was monitored
for a resolution of 2.5 milliseconds. The energy consumption of the RE-Mote was derived by calculating
the actual wattage and multiplying this with the resolution of the time measurements at 2.5
milliseconds. The evaluation was split in two main parts: the measurement of the energy consumption
on a standalone implementation of microECC for specific tasks, and the analysis of the actual RE-Mote-
device prototype’s power consumption with and without signing. Both scenarios utilize the microECC
library and the Secp192r1 ECC curve. Table 13 shows the results of the standalone measurements.
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Table 13: Average energy consumption of MicroECC.

Task Key gen sign Verify
Energy Consumption 0.016 Ws 0.019 Ws 0.020 Ws
&Y P (= 0,0044mWh) (= 0.0052mWh) (~ 0.0055mWh

The monitoring of the energy consumption of the actual RE-Mote prototype was performed over 10
minutes. The device measured the temperature every 30 seconds, generated the JSON message and
signed it. This message was then sent to a gateway utilizing COAP observe. This series of measurements
resulted in 20 interactions between the RE-Mote and the gateway and a total of approximately 240.000
monitoring points for each of the two experiments. The resulting power-trace of the RE-Mote with
enabled signing is depicted in Figure 13. This powertrace shows the current wattage every 2.5ms. The
average wattage of around 190mW, as well there are some increases to 280mW and 380mW,
indicating network activity and signing.
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Figure 13: Powertrace of the RERUM-device over 10 minutes with Time(s) on the x-axis and
Power(mW) on the y-axis.

Table 14 shows our measurements of the average power consumption of the RERUM-device, as well
as the respective overheads.

Table 14: Energy Consumption of the RERUM-device and consumption overhead involving standard
signatures.

With Without Overhead

Energy Measurements Signing Signing b — .
solute | Per Signing Relative
Average Wattage (mW) 188.9622 | 188.4694 0.4928 0.0246 0.26%
Average Amperage (mA) 30.2474 30.1525 0.0949 0.0047 0.31%
Average Consumption (mWs) 0.4724 0.4711 0.0013 0,00006 0.26%
Total Consumption (Ws) 119.8307 | 119.4552 0.3755 0.0188 0.31%
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2.3 Overheads of signing and verifying with Malleable
Signatures

Malleable signatures allow the signer to authorise subsequent transformations of the signed
document, such that the transformed signature over the transformed document still verifies under the
signer’s public signature verification key. Furthermore, they decouple the transformation, called
sanitization or redaction, from the signing and verification process. The class of redactable signatures
allows to remove/cloak/redact parts from signed documents, if the signer has marked such parts as
admissible to subsequent modification. RERUM sees this as a tool to carry out privacy enhancing
changes to signed data, such that the remaining data still can be verified to be of authentic origin.
Redactable signature schemes have many applications in the use cases of RERUM as described in
Deliverable D3.2 [RD3.2] or in [PK14].

For malleable signatures there are many cryptographic schemes in the cryptographic literature as well
as those developed in the course of this project (see Deliverable D3.1 [RD3.1] and D3.2 [RD3.2]). The
results obtained from comparing different implementations of standardised cryptographic operations
in the domain of ECC signatures that was carried out as an initial laboratory experiment yielded that
implementing crypto operations in sufficient speed is a not a trivial task. In the ideal case, the malleable
signature scheme shall be instantiated on already well implemented and at best hardware-accelerated
basic cryptographic operations. As we saw the MicroECC implementation of ECDSA signatures seems
to be a good choice.

In the course of RERUM several malleable signature schemes with a focus on the subsequent
transformation of redact/cloak where developed [PS15], [MPPS14], or [PS14]. Due to limited time and
resources we could only implement one scheme on actual hardware. So only the latter scheme,
presented at the ACNS conference in 2014 [PS14], was chosen for implementation on a RE-Mote. The
reason for choosing this specific scheme is because it has some cryptographic building blocks that were
not found in the already existing ECC libraries. It also it offers a lot of features that we consider to be
of unique interest to the loT community. Therefore, we did not want to rely solely on analytical
overhead calculations, but we wanted to have reliable statements.

In detail the scheme offers the following properties: (1) an attacker cannot generate non-legitimate
signatures, (2) redacted information remains hidden, and (3) that all algorithms create linkable
versions of the same message. The third requirement allows this scheme to be usable in the flow of
information in the loT as an attacker is not be able to generate “clones” of a signed message by
gradually redacting redactable message parts.

This scheme presented in [PS14] explicitly defined an operation called merging that among other
purposes can serve as a test when it is questionable whether or not two messages are derived from
the same original. However, we also performed some analytical calculations of the overhead based on
the actual numbers that we got from our laboratory experiments on standard ECC signatures, namely
on the most efficient MicroECC implementation, for other malleable signature schemes.

Therefore in the remainder of this section, the following schemes will be evaluated that we
implemented and measured on the RE-Mote:

1. Updatable Redactable Signature from ACNS 2014 [PS14]
2. Analytical overhead based on ECC measurements done on RE-Mote (see previous sections):
a. EUROPKI12 Non-Interactive Public Accountability for Sanitizable Signatures [BPS12]
b. ICETE12 Redactable Signature Schemes for Trees with Signer-Controlled Non-Leaf-
Redactions [MPPS14]

2.31 Implementation details

The ACNS2014 scheme bases upon a cryptographic trapdoor accumulator as presented in [PS14]. It is
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a building block which must be coded on the RE-Mote as it previously did not exist. The following is
taken from [PS14]:

We use the ideas given in [BP97], but make use of the trapdoor ¢(n).

Construction 1 (Trapdoor-Accumulator ACC)

We require a division-intractable hash-function H : {0,1}* - {0,1}". A formal definition is given
in [24]. LetACC := (Gen, Dig, Proof, Verf ) such that:

e @Gen:
Generate n = pg, where p and q are distinct safe primes of length A.
A prime p is safe, if p=2p’ +1, where p’is also prime.
Return (¢(n), (n, H)), where @(pq) :=(p-1) - (q - 1).
e Dig:
To improve efficiency, we use the build-in trapdoor. A new digest can therefore be
drawn at random. Return a eR Z*, .

e Proof:
To generate a witness p; for an element v;, set vi’ & H(v;).
Output p; & a¥ @ed e(m) mod p
o Verf:
To check the correctness of a proof p w.r.t. an accumulator a, the public key pkacc,
and a value v, output 1, if a = p" (mod n), and 0 otherwise.

We do note that this construction is related to GHR-signatures [GHR99]. Due to the build-in
trapdoor, we do not require any auxiliary information as proposed in [BP97]. The use of safe
primes allows us to almost always find a root. If we are not able to do so, we can trivially factor
n.

The proofs that our trapdoor-accumulator is strongly collision-resistant can be found in the
appendix.

Note, a is drawn at random for efficiency. We can also use the slower method aforementioned:
a will be distributed exactly in the same way.

To implement the primes in the size suitable to provide cryptographic protection on the RE-Mote, we
used the functions for big integer computation provided by the Contiki implementation of Pifiol
bigint.h (available: https://github.com/oriolpinol/contiki). This library was also part of the code that
was measured for ECC in the previous sections. The library bigint.h provides functions that help
perform arithmetical operations on big integers of unlimited size. The implementation of the
accumulator on a RE-Mote was done by Noélle Tiana Lilie Rakotondravony [R15].

The algorithm requires the transported message to be split into parts. For the ease of implementation
and presentation of the results we used a message encoding in JSON, that would just have two parts
containing for example the information of temperature of very high precision 27,4556 °C allowing a
modification such that “27,” or “4556” can be redacted. The construction uses the trapdoor
accumulator as documented in [PS14].

Hence, as an example, the JSON would look like the one depicted in the following code snippet:
{

“measurment id“:42, o%“17:%“27,”, [072”7:%4556",[]
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“tag”:"0000f£f42d8ccffede6” L
“s1”:%"3eebd0c758de8la8ebebbc3f07£f4cd65bb49£1356adc020602a8cee8810006”, [
“s2”:%"5a26affcbaacc65bbf8eebfl1f3b6719a54777006155balab4de2c7349100007, [

“stag”:“4afb990ca6lald3£99c62550a32cfb4592£3£550c517148957dcfed4e540008”, 1]

“Acc”:%3c27¢c776524e9ddd590b5b6a25a0d3b339%0c09£6497a86af40699e6aac000£”,

“Pk”:“bbalbaded44lbdecc32dcd6£09e2c32927a215181bl1l%aec21£6806b7260014"
U}

Note, the above figure shows the JSON elements that are necessary for the content split into parts and
the signature as well as the public key. This is the JSON string, which will be sent by the RE-Mote. The
JSON structure contains:

e the remaining parts of the message (marked as 1 and 2),

e thetag,

e the signature sigma which is the proofs of each remaining part of the message (s1 and s2)
e the proof for the tag

e the Accumulator value (Acc),

e the public key n to be used by the verifier to check the validity of the signature.

The public key is not really needed in every packet and it can therefore be elided. Here, we consider
the potential transport of the public key as the worst case scenario. All the other values are required
for the scheme to work.

The sign algorithm of [PS15] will use the accumulator’s digest and proof operation. It will add each part
of the message (e.g. “27,” and “4556”) into the accumulator value and it will produce a witness for
each part. The verify algorithm will use the accumulator’s verify operation to check if for each part the
witness verifies w.r.t. the accumulator value. Note, that the redact operation is very cheap. To redact,
only string operations are necessary as depicted in Figure 14 (taken from [R15]).

{ {
“1”: “Part A”, “1”: “Part A”,
“27 . “Part B”, “2” : “Part C”,
“3” : “Part C”, “tag” : “tag_value”,
“tag” : “tag_value”, “51” : “proof A”,
“s1” : “proof A”, “s2” : “proof C”,
“g2” : “proof B”, “stag” : “proof tag” ,
“g3” : “proof C”, “Acc” : “accumulator_value” ,
“stag” : “proof tag”, “pk” : “public key”
“Acc” : “accumulator_value” }
“pk” : “public key”

}

Before redaction After redaction

Figure 14: Exemplified overview to highlight that redact in [PS15] is only a string-based operation.

2.3.2 Experimental setup

The experimental setup is identical to the one used for the performance evaluation of ECC-based
signature schemes. It is described in detail in Section 2.1.2.

2.3.3 Analytical evaluation of other malleable signature schemes

Based on the results from the measurements of real ported implementations of several cryptographic
schemes (including one malleable signature scheme denoted as ACNS2014 presented in [PS14]) and
basic operations, we have chosen the following schemes for an analytical evaluation:
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e EUROPKI12 Non-Interactive Public Accountability for Sanitizable Signatures [BPS12]
e ICETE12 Redactable Signature Schemes for Trees with Signer-Controlled Non-Leaf-
Redactions [MPPS14]

In the following, we briefly explain the underlying routines of the two malleable signatures schemes.
We do not consider message overhead for those schemes, as this requires to encode the actual
information into a JSON message, and that can be done using various different ways. Best it shall be
tailored towards the content that is transported in each use case. Hence, this was not part of the
analytical evaluation.

2.3.3.1 EUROPKI12 - Non-Interactive Public Accountability for Sanitizable
Signatures [BPS12]

The scheme uses two standard digital signatures that are overlapping in the information they protect
and it requires two key pairs, one for the signer and one for the sanitizer. During signature generation
the signer includes the sanitizer’s public key in the signature and by that endorses any party that holds
the corresponding secret key to carry out sanitizations. Sanitizations here means that for a part which
is admissible for a subsequent change the contents of that part can be changed arbitrarily into any
string. The key for a sanitizer allows the signer to appoint the sanitizer, while it is possible to attach
the sanitizer’s private key alongside the message and thus enable anyone to sanitize the message [P13]
this has not been looked at for this deliverable.

While overhead still occurs in the parsing and generation of strings, this is neglected in the analytical
overhead. Moreover, the way the scheme is constructed requires the following operations of a
standard digital signature (e.g. microECC):

e EUROPKI12 Sign algorithm:
Two digital signature signing operation both with the signer’s secret key
e EUROPKI12 Sanitize algorithm:
One digital signature signing operation with the sanitizer’s secret key
e EUROPKI12 Verify algorithm:
Worst case three digital signature verify operations, two with the signer’s and one with the
sanitizer’s public key

Assuming for comparison that we use the MicroECC library with curve Secp192r1 in, so-called, fast
mode (signing: 0.206s and verify: 0.224s) this yields the following analytical worst case runtime
estimation depicted in Table 15:

Table 15: Analytical runtime estimation for sanitizable signature scheme from [BPS12] on RE-Mote

in seconds.
Scheme Sign Redact Verify
EUROPKI12 2 *0.206s = 0.412s 1*0.206s = 0.206s 3*0.2245s=0.672s
2.3.3.2 ICETE12 - Redactable Signature Schemes for Trees with Signer-Controlled

Non-Leaf-Redactions

The scheme from [MPPS14] uses an accumulator based on the work done in [BM93]. This relates to
the same scheme and accumulator that was implemented on the RE-Mote and tested by us in our lab
experiments. This accumulator is based on the RSA primitives of modulo arithmetic and it is left as
open work to see if this can be sped-up by the use of RSA accelerating crypto co-processors.
Additionally the scheme from [MPPS14] traverses the data structure of the tree, in RERUM the data
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structures being signed are assumed to be JSON (see also [P15]). It builds a Merkle hash tree over the
tree. To construct a Merkle-Hash-Tree the tree is traversed such that for each node x in the tree a so-
called Merkle-Hash (denoted as MH) is calculated as:

MH(x) = H(H(cx)||[MH(xD)]|...||MH(xn)),

where H is a collision-resistant hash-function like SHA and | | denotes a concatenation.

The depth and number of elements of the JSON structures sent by RERUM devices are simple, thus the
overhead of traversing and building a Merkle hash tree is not that big: Also, as previously noted in our
laboratory experiments, the computation of the SHA hashes does not represent the major overhead.

Thus, we expect the runtime performance of [MPPS14] to behave like that of the malleable signature
scheme implemented in the laboratory experiment.
2.3.4 KPIs

In this experiment, we evaluate the following Key Performance Indicators (KPI) defined in Deliverable
D5.1 [RD5.1]:

e Crypto-Runtime-Overhead (AL.PE.3),
e Crypto-Memory-Consumption-Overhead (AL.EF.3), and
e Crypto-Communication-Overhead (AL.EF.4)

for ECDSA with microECC on the RE-Mote with Contiki.

2.3.5 Performance evaluation

In this section, we illustrate and compare the measured results of ECDSA with MicroECC on the RE-

Mote with Contiki with Malleable Signatures in time and size.

2.3.5.1 Runtime and memory overhead of ECDSA with microECC on the RE-Mote with
Contiki in comparison to malleable signatures

The runtime overhead of the signing process was determined by using the integrated timer of the
CC2538 chip. These measurements were performed multiple times for each step of the signing process.
The resulting averages in comparison with standard signatures are shown in Table 16.

Table 16: Runtime of average execution time.

Runtime overhead average Execution Time [ms]
With microECC signatures (curve Secp192r1) 216
With malleable signatures - signing 7374
With malleable signatures - verifying 5772

The execution time overhead of the different signature schemes showed significant variance; resulting
in an average overhead of 216ms for the Secp192r1 signature utilizing MicroECC and 7374ms in case
of the malleable signatures.

We performed the measurement of the runtime overhead for sending messages, involving both signed
and unsigned payloads, by additionally measuring the transmission time for the respective messages
and further adding these results to the specific runtime of the crypto algorithms. The results are
summed-up in Table 17.
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Table 17: Runtime overhead for sending messages involving signatures.

Time of Tasks in ms trx:rs:ias i?on Signing int::);:::ion Overhead
Without signatures 102 - 102 -
With signatures 186 216 402 300
With malleable signatures 751 7374 8125 8023

Measuring the memory overhead of the malleable signatures was performed by us on a prototype of
the RE-Mote, resulting in an overhead of 10,32 kilobyte in total as shown in Table 18.

Table 18: Memory Overhead of malleable signatures.

Memory [bytes]
Memory Footprint
.text section | .data section .bss section Total
With malleable signatures 56730 1611 14081 72422
Without malleable signatures 48435 483 12941 61859
Overhead 8295 1128 1140 10563

2.3.5.2 Communication overhead of ECDSA with microECC on the RE-Mote with Contiki

A sample message generated by the implementation of the malleable signatures is shown in Figure
15. The length of a message signed with malleable signatures is 430 characters or bytes.

{

"measurement_id":42,

lllll: o

HZII: >

lltagll: ;

llslll: 5
”52": .
"'stag": ,
SACCHE )
llpkll: :

Figure 15: Malleably signed message.
Hence, a malleably signed message is over nine times bigger than an unsigned message (see Table
19):

Table 19: Average increase in message size of signing algorithms.

Message length Bytes Increase (bytes)
Without signatures 46 -
With standard ecc signatures 125 79
With malleable signatures 430 384
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We used the sniffer tool Wireshark in order to examine the number of sent messages, a typical GET
request from a client and the corresponding response from the RE-Mote were monitored (see Table
20).

Table 20: Average number of messages of a specific crypto algorithm.

GET request Number of CoAP blocks
Without signatures 1
With signatures 2
With malleable signatures 7

An unsigned message fits in one CoAP block, resulting in one message to be sent by the RE-Mote. The
message exceeding the lengths of a CoAP message, containing signed and malleably signed messages
divided into several blocks. This results in the partitioning into two blocks for standard signatures and
into seven blocks for malleable signatures.

Every GET request to the RE-Mote results at least two exchanged messages: one GET sent to the device
and the corresponding response. In case the message is split into several CoAP blocks, the transmission
of each block results in one GET request and one response. Thus, the use of signatures (or malleable
signatures) increases the additional transmitted messages by two for each CoAP block. The
corresponding results are shown in Table 21.

Table 21: Message overhead involving specific crypto algorithms.

GET request Overall message count Overhead
of an interaction (Additional messages)
Without signatures 2 -
With signatures 4 +2
With malleable signatures 14 +12

The blockwise transfer of a CoAP message prevents the fragmentation of the 6LowPAN packets and
thus the numbers of packets was equal to the number of COAP messages.

2.4 Energy efficiency of Malleable Signatures

This section continues the evaluation of Malleable Signature schemes that was presented in Section
2.3. We now shift our focus to the evaluation of the energy efficiency of the same signature schemes.
241 Implementation details

For the evaluation of energy consumption of malleable signatures, we use the same Contiki
implementation for the RE-Mote, enhanced by an implementation of the ACNS2014 scheme [PS14].
This is identical to the implementation used for the experiments presented in Section 2.3.

2.4.2 Experimental Setup

The experimental setup is identical to the one used for the energy efficiency evaluation of ECC-based
signature schemes. It is described in detail in Section 2.2.2.
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2.4.3 KPIs

In this experiment, we measure the Crypto Energy Consumption (AL.EF.5) as defined in Deliverable
D5.1 [RD5.1] for Malleable Signatures.

2.4.4 Performance Evaluation

Equal to experimental setup explained in Section 2.3.5.

24.4.1 Power Consumption of Malleable Signatures

The results of the standalone measurements show that the energy consumption for signing is 53
times higher and for verifying 68 times higher in comparison to standard ECDSA signatures. The
results are summarized in Table 22.

Table 22: Average energy consumption of malleable signatures.

Task Sign Verify
Energy Consumption 0.019 Ws 0.020 Ws
(ECDSA signature) (= 0.0052mWh) (= 0.0055mWh)
Energy Consumption 1.017 Ws 1.336 Ws
(malleable signatures) (= 0.2825 mWh) (= 0.3711 mWh)
2.5 Lightweight Datagram Transport Layer Security

Transport Layer Security (TLS), based on reliable transport protocols such as the Transmission Control
Protocol (TCP), is not suitable for protocols based on unreliable datagram traffic such as User Datagram
Protocol (UDP). A modified version of TLS, Datagram Transport Layer Security (DTLS) has been
introduced to address issues associated with unreliable connection. DTLS provides a mechanism that
allows packet retransmissions and reordering whenever it is required in [MRO4]. DTLS has been
described more thoroughly in deliverable D3.1 [RD3.1].

2.5.1 Relevance to RERUM'’s Use-Cases

DTLS is applicable to any devices in the RERUM architecture that require secure communication (either
end-to-end or hop-by-hop) at the transport layer level. It can be used transparently by any end
applications, which themselves reside at the application layer of the TCP/IP network stack. This
transparent feature implies that DTLS could be applied to all four of RERUM'’s Use-Cases. It directly
addresses the following User Requirements, as specified in deliverable D2.1 [RD2.1]:

o UR-7: The user needs to protect his measurements from malicious users;

o UR-25:Userrequires open solutions for authentication between devices, ensuring the integrity
of their data as well as the confidentiality.

Given how DTLS’ implementation in the Android operating system is not available to RERUM for
modification, in this section we focus on the evaluation of DTLS for the Zolertia RE-Mote platform.
Therefore, this analysis is relevant for both indoor Use-Cases as well as UC-02 — Environmental
Monitoring.

2.5.2 Purpose of the experiment

The goal of this experiment is to check behaviour of DTLS protocol in the environment, which is closer
to real deployment scenarios. The experiments should investigate two major issues: performance of
implemented (in lightweight fashion) cryptographic schemes and performance of DTLS protocol itself.
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The results from this experiment are part of the evaluation for the following evaluation criteria that

have been defined in deliverable D5.1 [RD5.1]:

e AL.EF.3 "Crypto-Memory-Consumption-Overhead",

e AL.EF.4 "Crypto-Communication-Overhead",

e AL.PE.3 “Crypto-Runtime-Overhead”,
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e AL.PE.4 “Lightweight Datagram Transport Layer Security (DTLS) Protocol”.

2.5.3 Implementation details

DTLS consist of handshake and record protocol. The main purpose of the DTLS is to authenticate
communication parties, negotiate a cipher suite and exchange keys that are later used to protect traffic
data. All handshake messages can be divided on six groups of messages (so-called flights) between
communication parties (Figure 16); three flights are sent from a client to a server and three from a
server to a client. Note that DTLS protocol consists of both secret (a pre-shared key) and public-key
(raw public keys and X.509 certificates) options. A detailed description of DTLS operation is provided

in D3.1 [RD3.1].

Client

Server
ClientHello
Flight 1
HelloVerifyRequest
Flight 2
ClientHello Flight 3
ServerHello
Certificate*
ServerKeyExchange*
CertificateRequest*
ServerHelloDone
Flight 4
Certificate*
ClientKeyExchange*
CertificateVerify *
[ChangeCipherSpec]
Finished
Flight 5
[ChangeCipherSpec]
Finighed
Flight 6

254 Experimental setup

Figure 16: An overview of the DTLS handshake.

In this set of experiments, we have employed two Zolertia Re-Mote loT hardware boards: one was
utilized as a client while the other as a server, respectively. We placed the two motes close to each
other in order to guarantee the reliable and successful wireless communication (Figure 17). We ran
our experiments on top of Contiki OS while each set of experiments was executed ten times to derive

standard deviation values.
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Client Master

Figure 17: An overview of the Zolertia RE-Mote based experimental scenario.

2.5.5 KPIs

This section aims to benchmark the total handshake time of a specific implementation of DTLS. In this
section we study the performance of DTLS version 1.2 (TinyDTLS), an optimized implementation of the
DTLS protocol for embedded devices, both under Elliptic Curve Cryptography (ECC) with one of the
well-known DTLS curves, the Secp256r1 curve (also known as NIST P-256, for the exact parameters see
[RECFG]), and Pre-Shared Key (PSK) modes.

The KPIs that will be measured within this experiment are the following:

e Code footprint of cryptographic primitives,
e Overall latency of DTLS handshake under different modes.

2.5.6 Performance evaluation

2.5.6.1 Code footprint of cryptographic primitives

Both code footprint and RAM requirements are measured at compile-time. This is achieved by building
a firmware image and by subsequently running the toolchain’s -size command (e.g., $ arm-none-eabi-
size obj_cc2538dk/dtls.0) on each object files. Note that both client and server are utilizing the same
files in this TinyDTLS implementation. The results presented in Table 23, provide the following
information about each code module:

e Code footprint, including program memory and constant (const) expressions (text)
e Variables initialized at compile time (data)
e Space reserved for variables which are not initialized at compile time (bss)

Table 23: Code size and RAM footprint in bytes for each object.

Object filename text .data .bss Total
obj_cc2538dk/dtls.o 3224 12 8114 11350
obj_cc2538dk/crypto.o 335 0 1335 1670
obj_cc2538dk/hmac.o 1578 0 1335 2913
obj_cc2538dk/rijndael.o 6678 0 0 6678
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obj_cc2538dk/sha2.0 1325 0 0 1325
obj_cc2538dk/ccm.o 1064 0 4 1068
obj_cc2538dk/netqg.o 277 12 375 664
obj_cc2538dk/dtls_time.o 32 0 0 32
obj_cc2538dk/peer.o 150 12 45 207
obj_cc2538dk/session.o 148 0 0 148

Furthermore, the same command can be executed on the entire binary image, for instance $ arm-
none-eabi-size dtls-client.elf. The results of this command are presented in Table 24, while the outputs
provide the following information about the entire firmware:

e Code footprint, including program memory and constant (const) expressions (text): 67.77 and
67.29 KB for the client and server respectively
e Variables initialized at compile time (data): 614 (client) and 550 (server) bytes

e Space reserved for variables which are not initialized at compile time (bss): 84685 and 83899
bytes for the client and server respectively

Table 24: Code size and RAM footprint in bytes for the entire firmware image.

Firmware filename text .data .bss Total
dtls-client.elf 67774 614 16297 84685
dtls-server.elf 67292 550 16057 83899

2.5.6.2 Overall latency of DTLS handshake

The handshake time is calculated from the first “ClientHello” message from the client node until the
last message (i.e., “Finished”, Handshake compete) from the server node. To measure this time, we
connected each node with terminals in order to get debugging output regarding the messages
exchanged between the two devices.

In Table 25, both average values along with standard deviation are provided. Our experimental
performance evaluation results show that ECC requires 137 seconds in average, while PSK mode only
1.34 seconds. These results can be explained by the fact that in PSK mode, there is little computation,
since the nodes generate the random values during the handshake, which is then exchanged. On the
other hand, ECC, which is considered to be secure and efficient approach to public-key cryptography,
which requires high computations both on the client and server side.

Note that our experiments took place on top of two constrained devices. We should consider that in
most of the applications the gateways are operated over powerful devices, and the computation time
for ECC would thus be halved, due to the fact that the computation time for the server side will be
negligible short. Furthermore, the implementation of TinyDTLS under ECC mode was not designed to
be executed explicitly on top of such constrained devices. It is important to be mentioned that there
is room for optimization of the ECC both from the mathematical point of view and its implementation.
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Table 25: Total handshake times for ECC and PSK.

Handshake times (in seconds)

ECC PSK

Average Standard Deviation Average Standard Deviation

137.324 0.65687 1.341 0.1912

Finally, the experimental evaluation results in a tradeoff between computation time and key
management. Indeed, from the utility point of view, from the first glance ECC mode presents inefficient
performance (i.e., long handshake time) when compared to PSK. However, we should take into account
different type of applications that users may operate. For instance, it could be durable for time driven
applications (e.g., temperatures or humidity readings), since it is not necessary for the devices to
perform handshakes often. On the other hand, ECC is less efficient in real-time applications (e.g.,
turning-on the light). Furthermore, in dense scenarios where there are many nodes, ECC mode is more
efficient in terms of key management, and thus, one time ECC overhead might be suitable, and
moreover, the users benefit public key scheme..

2.6 Microsoft’s NUMS Curves

As it was detailed in D3.1 [RD3.1], a group of researchers from Microsoft have designed a new set of
elliptic curves [BCLN14] and proposed them to IEFT standardisation body [NUMS14]. Although this
proposition is relatively new and security claims together with performance results have not been
widely studied yet, there are several clues that the proposed set of curves could represent a good
replacement for the NIST standard (especially taking into consideration curves defined over primes).
MSR ECCLib [BCLN14] is an efficient cryptography library that provides functions for computing
essential elliptic curve operations on a new set of high-security curves.

2.6.1 Relevance to RERUM'’s Use-Cases

In this section, we focus on the evaluation of MS NUMS curves for the Zolertia RE-Mote platform.
Therefore, this analysis is relevant for both indoor Use-Cases as well as for UC-O2 — Environmental
Monitoring.

2.6.2 Purpose of the experiment

The goal of this experiment is to check the feasibility of using NUMS curves with the Zolertia RE-Mote
platform. The experiment investigates two evaluation criteria:

e The code size and RAM requirements of the implementation of NUMS curves for the Contiki
Operating System and the RE-Mote platform.

e Execution time for various NUMS curve operations, again using the implementation of NUMS
curves for the Contiki Operating System and the RE-Mote platform.

The results from this experiment are part of the evaluation for the following evaluation criterion that
has been defined in deliverable D5.1 [RD5.1]:

e AL.PE.3 “Crypto-Runtime-Overhead”

2.6.3 Implementation details

Contrary to Curve25519 and Ed2519, and similarly to the NIST curves, one curve from NUMS set, (to
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be more specific those expressed as short Weierstrass equation and over primes) could be used both
in ECDH and ECDSA algorithms. Below additional details are listed:

e MSR ECCLib supports six high-security elliptic curves proposed in [BCLN], which cover three
security levels (128-, 192-, and 256-bit security) and two curve models. The curves have a very
simple and deterministic generation with minimal room for parameter manipulation.

e It includes support for ECC functions necessary to implement most popular elliptic curve-based
schemes. In particular, MSR ECCLib supports the computation of scalar multiplication for the six
curves above in three variants:

1. Variable-base scalar multiplication (e.g., this is used for computing the shared key in the Diffie-
Hellman key exchange).

2. Fixed-base scalar multiplication (e.g., this is used for key generation in the Diffie-Hellman key
exchange).

3. Double-scalar multiplication. This operation is typically used for verifying signatures.

e MSR ECCLib offers full protection against timing and cache attacks by executing crypto-sensitive
operations in constant-time with no correlation between timing and secret data.

e It achieves high performance without compromising security, portability and usability.

e MSR ECCLib is supported on a range of platforms, including x64, x86, and ARM devices running
Windows or Linux.

2.6.4 Experimental setup

This section aims to benchmark the previously presented NUMS library on constrained devices such as
CC2538 System-on-Chip [TI113], which is the core of the Zolertia’s RE-Mote platform. To this aim, we
employed a Zolertia RE-Mote loT hardware board. We run our experiments on top of Contiki OS while
each set of experiments (i.e., each arithmetic) was executed ten times.

2.6.5 KPIs

In this section, we present the performance evaluation results in terms of the computation time for
the MS NUMS curves. More specifically, we benchmark the computation time of the elliptic curves for
various arithmetic operations.

The KPIs that will be measured in this section are the following:

e Code footprint of MS NUMS curves,
e Computation time of the elliptic curves.

2.6.6 Performance evaluation

2.6.6.1 Code footprint

Both code footprint and RAM requirements are measured at compile-time. This is achieved by building
a firmware image and by subsequently running the toolchain’s -size command (e.g., S arm-none-eabi-
size obj_cc2538dk/curves.o) on each object files. The results presented in Table 26, provide the
following information about each code module:

e Code footprint, including program memory and constant (const) expressions (text)
e Variables initialized at compile time (data)
e Space reserved for variables which are not initialized at compile time (bss)
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Table 26: Code size and RAM footprint in bytes for each object.

Object filename text .data .bss .dec
ecc512.0 14928 0 0 14928

fp.o 9808 0 0 9808
ecc_additional.o 4232 0 1092 5324
extras.o 4632 0 0 4632

curves.o 0 3192 0 3192

Furthermore, the same command can be executed on the entire binary image (i.e., $ arm-none-eabi-
size fp-test.elf). The results of this command are presented in Table 27, while its outputs provides the
following information about the entire firmware:
e Code footprint, including program memory and constant (const) expressions (text): 53815
bytes,
e Variables initialized at compile time (data): 2046 bytes,
e Space reserved for variables that are not initialized at compile time (bss): 13551 bytes.

Table 27: Code size and RAM footprint in bytes for the entire firmware image.

Firmware filename .text .data .bss .dec
fp-test.elf 53815 2046 13551 69412
2.6.6.2 Computation time

This section presents experimental results on the time required for various field arithmetic
computations over NUMS curves (averages and standard deviations). Note that in the NUMS library
there is not specified (designed) security level lower than 256 [BCLN14].

As can be observed from the results, the higher the arithmetic value is, the longer the computation
time required to perform the functions gets. Furthermore, the arithmetic for Galois Fields GF(2”256-
189) as shown in Table 28 is more efficient than other two (i.e., GF(2*384-317) shown in Table 29,
GF(27512-569) shown in Table 30). However, it is used as the underlying arithmetic for the curve with
the lowest security level among those curves specified in [BCLN14]. In fact, in many applications the
128-bit security level (i.e., 256) would be enough, but if users want to employ higher level of security
in their applications, in this section we benchmarked the possibilities. However, there is a performance
penalty, namely the increased computation time.

Table 28: Field arithmetic over GF(22256-189).

Computation time (in microseconds)

Functions curve numsp256d1 curve numsp256t1
Average Standard Dev. Average Standard Dev.
Subtraction 12.3 0.94868 12.6 1.26491
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Division 11.1 1.44914 10.5 1.58114
Negation 6.6 1.26491 8.1 1.44914
Squaring 161 1.41421 160.1 1.44914
Multiplication 172.4 1.26491 174 2.1602
Inversion | 47148.3 19.55121 47143.1 18.3875
Modular addition 46.8 1.54919 46.8 1.54919
Montgomery multiplication 486.2 1.54919 481.1 1.44914
Montgomery inversion | 155276.3 68.51448 142843.2 57.08045

Table 29: Field arithmetic over GF(2A384-317).

Computation time (in microseconds)

Functions curve numsp384d1 curve numsp384tl
Average Standard Dev. Average Standard Dev.
Addition 24.9 1.44914 25.8 1.54919
Subtraction 18 0 18 0
Division 14.1 1.44914 14.1 1.44914
Negation 9.9 1.44914 10.2 1.54919
Squaring 314.3 0.94868 3143 0.94868
Multiplication 343.1 1.44914 343.4 1.26491
Inversion 129175.9 39.61888 129128.9 47.93387
Modular addition 72.1 1.44914 71.5 1.58114
Montgomery multiplication 1034.3 1.70294 1034 0
Montgomery inversion 491719.6 208.63535 489413.1 199.43946

Table 30: Field arithmetic over GF(2A512-569).

Computation time (in microseconds)

Functions

curve numsp512d1

curve numsp512t1
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Average Standard Dev. Average Standard Dev.
Addition 34.8 1.54919 35.1 1.44914
Subtraction 25.2 1.54919 25.5 1.58114
Division 19.2 1.54919 20.1 1.44914
Negation 12 0 12 0
Squaring 497 0 497 0
Multiplication 549.6 1.26491 548.1 1.44914
Inversion | 269685.1 71.28885 269657.4 122.00383
Modular addition 88.3 0.94868 88.6 1.26491
Montgomery multiplication 1771.4 40.81993 1783.2 41.13069
Montgomery inversion | 1083382.7 402.05557 1083054.1 669.04251

2.7

Side channel leakage (e.g., via timing, power or EM side channels) enables the extraction of secret data
out of cryptographic devices, as initially demonstrated by Kocher (et al.) in 1996 and 1999 [K96],
[KJJ99]. The engineering community reacted quickly by developing a variety of countermeasures that
are commonly described as masking and hiding (see [MOPO08]). Such countermeasures intend to
reduce the overall exploitable leakage via techniques that are cheap to implement.

Leakage-Resilient Message Authentication Codes

In this section we evaluate a practical Message Authentication Codes (MAC) scheme (inspired by the
bilinear ElGamal cryptosystem by Kiltz and Pietrzak [KP10]), which is provably secure against
continuous leakage model under the Only Computation Leaks Information (OCLI) assumption.

A message authentication is a technique that protects message integrity, i.e., it should detect any
message modifications during a communication process between a sender and a receiver. As described
in D2.3 [RD2.3, Section 6.11.1.1], such an Integrity Generator / Verifier mechanism is required in order
to offer a certain security feature for the RERUM architecture. It is worth noticing that the integrity
protections might be also used as underlying component of D2D Authenticator (as described in Section
3.8.2). In general, the message integrity can be achieved by applying both public and private-key
schemes. In the latter case, the message integrity can be achieved with use of digital signatures, in the
former case, to ensure integrity one can use, i.e., MAC. The details of the proposed leakage resilient
MAC are presented in D3.2, [MOSW15]. Unfortunately, similarly to other keyed cryptographic
primitives they might leak secret information via side-channels. Thus considering the mentioned
problem, a novel leakage resilient MAC scheme is proposed that is designed to tolerate some leakage.

2.7.1 Relevance to RERUM’s Use-Cases

The proposed MAC’s design might be considered for practical applications. Indeed, it improves security
of employed protocols especially in embedded systems, where side-channels are more likely to be
exploited. Improving security of underlying primitives and protocols would also lead to a better privacy
for RERUM users. More specifically in terms of RERUM’s Use-Cases, the LR-MAC mechanism applies to
all UCs that employ embedded hardware such as the Zolertia RE-Mote (both indoor UCs as well as UC-
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02 - Environmental monitoring).

2.7.2 Implementation details

As documented in greater detail in D3.2 [RD3.2], a MAC scheme can be defined as a tuple that
consists of three algorithms:

M = (MAC.KeyGen, MAC.Tag, MAC.Ver),

where:

R
e MAC.KeyGen is a probabilistic algorithm generating a suitable key K; we denote this by K +—
MAC.KeyGen().
e MAC.Tag is probabilistic algorithm taking as an input key K, message m and generating tag o;

R
we denote this by o ¥~ MAC.Tag(K, m).&
e MAC.Ver is deterministic algorithm taking as an input secret key K, tag o, message m and
outputting boolean variable whether the tag is correct; we denote this by b ¢ MAC.Ver(K, m,
o).

In addition, we require (for correctness) that for all valid keys K the following equation holds:
MAC.Ver(K, MAC.Tag(K, m), m) =1

2.7.21 Bilinear MAC scheme

Before we describe a leakage resilient MAC, we introduce the bilinear maps [GPS08] and the bilinear
MAC scheme, on which the leakage resilient MAC is based. Let Gi, G2 and Gj; be a cyclic groups all of
prime order p with generators g1, g> and gs respectively. The bilinear map is a function e : GG1 x G; =
Gs that holds both bilinearity, i.e., Vu € Gy, v € Gy, a, b € Z, : e(u?, v°) = e(u, v)*® and non-degeneracy
e(g1, g2) # 1 properties. Following the general definition of the MAC scheme the bilinear MAC is defined
as in Figure 18. In the bilinear MAC scheme, the key generation algorithm MAC.KeyGen returns a
random element of the group G;, i.e., K. In the second algorithm, i.e., in a tag generation MAC.Tag part,
the first step hashes the message using a hash function that transforms a message of an arbitrary
length into an element of the group G, i.e., H: {0, 1}* = G,. In the second step of the Tag a bilinear
map is applied, in which the first input is the previously generated key K and a hash form the first step.
This step generates the desired tag o on the output. The third algorithm, i.e., the verification algorithm
MAC.Ver takes as inputs the key K, the tag T, the message m and reassembles the Tag procedure to
generate a new tag T'. In the last step MAC.Ver algorithm simply checks the correctness of the newly
generated tag T'.

proc KeyGen(): proc Tag(K, m): proc Ver(K, T.m):

K &G W« H(m) W < H(m)

Return K T'—e(l; W) T + e(K, W)
Return T’ Return 7/ =T

Figure 18: Bilinear MAC scheme [MOSW15].

2.7.2.2 Leakage-Resilient MAC

Having defined the key update mechanism we can now introduce the leakage resilient MAC scheme
as it is shown in Figure 19. Following the general definition of MAC, the leakage resilient version
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consists of three algorithms: key generation MAC.KeyGen (also referred to simply as KeyGen), tag
generation MAC.Tag (also referred to simply as Tag) and verification MAC.Ver (also referred to simply
as Ver). The key generation mechanism MAC.KeyGen generates two shares by applying the following
procedure: firstly, the random element of the group Gi is generated together with a random share
(which is also an element of the group Gi). Furthermore, the second share is calculated by multiplying
the preciously generated K by the multiplicative inverse of the first share and both shares are returned.
The tag generation procedure Tag can be roughly split onto two main parts, i.e., Tag® and Tage. The
first sub-procedure Tag® takes the first share of the key and the message as the input. Then the hash
function of the message is calculated, followed by the bilinear mapping, in which the input, the first
share and the hash is used. The mapping generates the first share of the tag. The rest part of the sub-
procedure performs the share update, in which the next share of the key is generated. The second sub-
procedure of the tag generation, i.e., Tage performs similar steps: a bilinear mapping that takes as
input the second share and the second share update for the next tag generations. The output tag T is
a multiplication of share tags obtained in bilinear mapping steps. The verification procedure Ver is the
same as the bilinear verification procedure in bilinear MAC. The security definition only allows to leak
on Tag and do not allow to leak on key generation, since this would leak the original key.

The practical implementation of the leakage resilient MAC scheme might be realised using the Barreto-
Naehrig (BN) [BNO6] family of paring-friendly curves. The provisional evaluation results show that the
scheme might be implemented on constrained devices, i.e., on RERUM devices.

proc KeyGen(): proc Tago(sie: m): proc Ver(K,T.m):
K &G W H(m) W« H(m,u)
S5 & Gy 2 — (SO, W) T' + e(K, W)

Return (T =T)
SDO‘(_K(S(}O)_l ?“H_]i'Gl

Return(SOOESDO) qu <—S?'T‘i+1

Return (Sgl:-riﬂzt?, W)

proc Tagg_(S?, t?, W.rit1):
1% (ST W)

Sﬁl A 5? . '?'g'_+11

T
Return (Sﬁl,Tj

Figure 19: Leakage Resilient MAC [MOSW15].

2.7.3 KPIs

The KPIs that will be measured in this section are the execution times of random point generation
methods and of the various operations used by LR-MAC.

2.7.4 Experimental setup

All algorithms in our scheme were implemented using the MIRACL software library [PSNB10], which is
a portable C/C++ library that supports a wide-range of different platforms including embedded ones.
The advantage of the selected library is the extensive support for highly efficient pairing operations. In
addition, we extended and adopted functionality provided by the library to our particular case,
whenever required. For the underlying pairing operations, MIRACL uses the well-known Miller
algorithm [MO5]. Furthermore, it also applies the Galbraith-Scott method [FPS12], which allows

© RERUM consortium members 2016 Page 55 of (104)



Deliverable D5.3 RERUM FP7-ICT-609094

computing a mapping between the groups G, and Gs efficiently. All mentioned optimisation strategies
increase efficiency of pairing computations, thus speeding up our proposed scheme and making it
suitable for more resource-constrained environments.

We implemented and measured execution times of the schemes on both an embedded platform and
a high-end device:

e For the former case, as a target platform, we selected a popular STM32F4 Discovery? board,
which houses 32-bit ARM Cortex-M4 CPU. This device is more powerful than the Zolertia RE-
Mote (Cortex M4 instead of M3, 2x flash size, 6x RAM size) and was chosen in order to mitigate
the risk of being unable to implement the scheme for the target platform due to code size
restrictions. As we see in the remainder of this section, experimental results are very
promising. We believe that implementing LR-MAC scheme on the Zolertia RE-Mote will be
feasible, provided some code size optimisations are undertaken. In terms of execution times,
the two micro-controllers (ARM Cortex M3 and M4) are fundamentally very similar. The former
uses the ARMv7-M architecture, whereas the latter uses ARMv7E-M. The differences between
the two architectures are of an incremental nature: Both have the same instruction set, with
the ARMV7E-M offering Digital Signal Processing (DSP) extensions and an optional single-
precision Floating Point Unit (FPU). Taking those under consideration, we anticipate execution
times on the M3 to remain within deployable rages. This investigation remains part of our
future work.

e For the latter case, we utilised the 64-bit Intel Core i7 CPU. The internal clock of the Cortex-
M4 was set to available maximum, i.e., 168MHz, whereas the Intel i7 ran with a 3GHz clock.
We ran our benchmarks several times to derive median timings.

2.7.5 Performance evaluation

In this section we present the performance evaluation of the leakage resilient MAC which might be
used in practical applications.

Random_Sampler: Try_and_Increment: Random _Scalar: SWEncoding:
loop .. F; Let P be a generator of ;% F;
& F loop E(Fy) wevV=3-t/(1+b+12)
P
if = € E(F,) then if - € E(F,) then k& F; T —14+/=3/2 — tw
o {0,1} . {0,1} return R = [k]P -.1:'-2~(——1—|—$12
y+ —1'-/rZ2+b y+ —1'-t2+5b 23 1+ 1/w
Return R = (z,y) Return R = (z,y) T1,T9,7T3 g Fy
end if else a+— xo(ri- (23 +0))
end loop r+z+1 B+ xo(r3 - (3 + 1))
end if i 4 [(@a—1)-8 mod 3]+1
end loop R « (zixo(r3 - t) -
VI3 +B)
Return R

Figure 20: The algorithms for the four point samplers considered.

Generating random group elements securely is vital for key generation and key updates (which happen
in TAG procedure). We found in [MOSW15] four options (see Figure 20 for algorithmic descriptions)
for this purpose, which we now discuss in turn. The first one, the Random_Sampler procedure,
randomly selects an x-coordinate and checks if it is on the BN curve. In case of success, the procedure
computes an associated y-coordinate, otherwise randomly selects another x-coordinate. The second

2http://www.st.com/web/en/cataIog/tools/FM 116/5C959/551532/LN1848?icmp=In1848_pron_pr-stm32f446_dec2014
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key generation procedure, Try and Increment is very similar to the first one. It differs only in re-
selection of x-coordinate in which the procedure increments x-coordinate by 1 and repeats the
assessment of whether a new x is on the curve. The third one, Random_Scalar selects a scalar at
random and performs a scalar multiplication using a fixed group generator. The last procedure uses
the encoding to BN curve [FT12], where a random element t € F, is transformed into an element of
the curve E(F,), which was used by Galindo et al. [GGLVV14]. Note that when using this encoding one
has to perform it twice in order to generate a point distributed uniformly at random [GGLVV14]. Hence,
the timings are effectively twice as long in practice.

2.7.5.1 Execution time

For a fair comparison of timings, all procedures were implemented without blinding. Applying blinding
to the Random_Sampler, Try_and_Increment and Random_Scalar methods requires one additional
multiplication. A more involved blinding method for the BN encoding has been proposed in [FT12].
Table 31 shows that Random_Sampler and Try_and_Increment are by far the most efficient (the
SWEncoding method needs to be performed twice for uniformly distributed points), and it is clear that
this advantage would also hold when blinding is included. As the Random_Scalar method is not only
slow, but also known to be very vulnerable to power analysis attacks [C99].

Table 31: Performance comparison of random point generation methods.

Device Cortex-M4 Intel i7
Operation Time (usec) Time (usec)
128-bits | 192-bits | 128-bits | 192-bits
Random_Sampler 36,000 588,000 96 1,159
Try_and_Increment | 34,000 569,000 76 1,119
Random_Scalar 173,000 | 2,827,000 389 5,186
SWEncoding 30,000 616,000 121 1,217

Attack vectors: It has been shown practically that the Random_Scalar method can completely leak the
entire secret randomness and hence strictly speaking, it cannot be used for schemes proved secure in
the continual leakage model. Security aspects of the SWEncoding scheme have been discussed by
Galindo et al. [GGLVV14]. They conclude that the SWEncoding might leak via the Jacobi symbol. The
security of the other two methods with respect to the continual leakage model has not yet been
investigated. Hence we will now discuss the security considerations here.

The Try_and_Increment procedure will leak information about the number of increments via its overall
execution time (which will be visible from power or EM traces). It is not obvious how this information
could be utilised efficiently. However, it will contribute to the amount of leakage per call for the A
security bound [MOSW15].

The Random_Sampler method chooses values for x independently of previous choices and hence does
not leak any additional information on the x from its high-level functionality. The only part, which may
reveal information about the point is the calculation of the Jacobi symbol.
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2.7.6 Overview of the overall performance

Lastly, we give an overview of the performance of the high level functions of the MAC constructions in
Table 32. The basic MAC scheme had identical operatiosa ns in the MAC.Tag and MAC.Ver procedures
(bar the additional equality check in MAC.Ver which is extremely fast), hence the resulting identical

timings.

Table 32: Performance comparison (Bilinear and LR MAC).

Device Cortex-M4 Intel i7
Operation Time (usec) Time (usec)

128-bits 192-bits 128-bits | 192-bits

MAC.Tag | 2,146,000 | 30,317,000 7,935 68,692
MAC.Ver | 2,146,000 | 30,317,000 7,958 68,687

KG* | 72,000 1,126,000 170 2,128
TAG* | 4,059,000 | 57,274,000 | 15,473 130,612

VRFY* = MAC.Ver | 2,146,000 | 30,317,000 7,958 68,687

Share | 34,000 566,000 94 1,082

TAG® | 2,183,000 | 30,883,000 7,974 69,650

TAGe | 1,874,000 | 26,382,000 7,162 60,841

Recombine 2,000 11,000 <1 <1

Switching then to the leakage resilient version, it is clear that the cost essentially doubles for the
MAC.Tag computation. Since we had to assume MAC.Ver was not leaking (recall that our construction,
like other MAC constructions requires the reconstruction of MAC.Tag during MAC.Ver, which is
seemingly impossible to do securely allowing adaptive adversaries in the continual leakage model), the
timings for MAC.Ver in the leakage resilient scheme are the same as for the scheme without leakage.

2.8 RSSI-based CS encryption keys

In RERUM Deliverable 3.1 [RD3.1] we described an algorithm for on-the-fly secret key generation to
be used in a Compressive Sensing (CS) encryption scheme. CS has the advantage of simultaneous data
encryption and compression. Regarding its encryption functionality, CS operates as a symmetric block
cipher where cipher-text y € R is produced by multiplying plaintext x € RY (M « N) with the
measurement matrix @ € RMXN as shown below:

y = Px
This forms an undetermined system that can be solved using a number of optimisations algorithms like
the OMP algorithm [TRGIO7]. The measurement matrix @ € RM*N plays the role of the encryption key.

The key generation scheme we proposed is based on the RSSI (Received-Signal-Strength-Indicator)
having a number of advantages that make it suitable for use by resource constrained devices like the
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sensors: (i) it does not require any key pre-storage, (ii) it does not require any key distribution
mechanism, and (iii) keys can be updated dynamically. Briefly, the proposed scheme consists of the
following phases:

e RSSI sampling: RSSI measurements are periodically collected by the sensors.

e Quantisation: The collected RSSI samples are quantised using a pre-defined number of
bits/sample.

e Key uniformity: CS performance (in terms of the reconstruction/decryption error) minimises
when matrix @ is generated based on a uniform distribution. To achieve this, quantisation data
are hashed using a secure hashing function that generates a uniform distribution.

¢ Information reconciliation: One of the communicating parties (sensors) creates a secure hash
from its generated RSSI key. This secure hash is then transmitted to the second sensor, which,
based on its own hash, it chooses the most appropriate common secret key to be used for the
CS encryption.

2.8.1 Network topology and software layout

In order to evaluate the key generation scheme, we developed a CoAP Resource within the RD Adaptor
for the RSSI collection. As running a full implementation of the key generation algorithm on the sensors
is currently infeasible, due to their resource constrained nature, a two-step approach is used: (i) we
first collect the RSSI measurements, and (ii) then we execute and evaluate the algorithm offline. Figure
21 shows the network topology, and the main building blocks of the RSSI collection module. In this
scenario, there are two RE-Mote RDs (S1 and S2) that collect RSSI measurements, while a third RD acts
as a Border Router (BR), forwarding the collected measurements from the sensor network (IEEE
802.15.4) to a laptop that executes the key generation scheme.

The purpose of this scenario is to create a secret key between S1 and BR, but without S2 being able to
correctly decrypt the data that flow between S1 and BR, using its own key (that is also derived from
RSSI measurements). Here, we assume that S2 acts as a passive adversary that is fully aware of the key
generation algorithm used, and which can successfully eavesdrop on the encrypted data exchanged
between S1 and BR.

As the performance evaluation will be executed offline, we collect the RSSI measurements for S1-BR
as follows:

e BR periodically transmits UDP packets to S1.

e Upon receiving a UDP packet from BR, S1 computes and stores the corresponding RSSI
measurement for this packet.

e Slsends areply to the BR that contains the computed RSSI value along with the measurement
ID of the original initial packet.

e When BR received this reply, it computes a second RSSI value.

For each packet BR transmits to S1, the nodes produce a pair of RSSI values (one for BR and another
one for S1) along with the measurement ID. For example: {“id”:1, RSSI_S1: “-78”, RSSI_BR: “-80”}.
Essentially, probe UDP packets are transmitted between S1 and BR to collect the RSSI values for that
link. Each measurement is stored on the BR, and is exposed as a CoAP resource, thus making feasible
its collection from a CoAP client that is located outside from the sensor network (Figure 21). Figure 22
shows a snapshot of RSSI measurements collected for the link of BR-S1 using this topology, and the
developed software that is based on Contiki OS, while Figure 23 shows a snapshot of RSSI
measurements collected for the link of BR-S2.
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Figure 21: Software layout and network topology for secret key generation.
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Figure 22: RSSI measurements for the link between BR and S1.
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Figure 23: RSSI measurements for the link between BR and S2.

Note that in a real secret key generation implementation, each RD would store its own RSSI values,
without the need to piggyback replies to BR. The probing mechanism would still be necessary in real
scenarios as it is used to take advantage of the channel reciprocity: the multipath properties between
a sender and a transmitter (gains, phase shifts, and delays) are identical on both directions of the
communication link.

2.8.2 KPIs

The KPIs measured in this experiment are as follows (see also evaluation criterion AL.PE.6 in RERUM
Deliverable D5.1 [RD5.1]):

- Bit mismatch rate between the encryption keys of the legitimate and the malicious devices.
- Reconstruction error at the two receivers.
- Time required to agree upon a common secret key.

2.8.3 Performance evaluation

We evaluate the secret key generation scheme in terms of the reconstruction (decryption) error,

defined as e = %, where x and X are the original and decrypted plaintexts, respectively; hence,
2

this error expresses the fidelity between the original and the decrypted plaintext.

We use three RE-Mote RDs, deployed as shown in Figure 21, in an indoor lab environment. Sensors S1
and S2 are probed periodically by BR, and encryption keys @; and @, are generated based on the
collected RSSI values, and for the optimum RSSI block derived after information reconciliation
(described in [RD3.1]). As S2 is fully aware of the key generation scheme, and based on the optimum
block id between S1 and BR it has overheard, it generates its key (@), and then it attempts to decrypt
subsequent ciphertext data (assumed to be) transmitted from BR to S1. The cipher-text data are stored
in the external PC we use for the offline performance evaluation.

After the RSSI measurements have been collected, and keys @; and &, are generated, we compute
the reconstruction error when decrypting data that have been encrypted using CS, and for four
different compression ratios: 25%, 50%, 75%, 90%. For S1, the data are encrypted and decrypted using
the same key @,, while for S2, data are encrypted using @; and decrypted using @,. Unlike other
symmetric encryption algorithms, where the encryption and the decryption keys have to be identical,
in CS they can differ, as lossy compression is also involved. The smaller the difference between the
encryption and the decryption key, the smaller the CS reconstruction error.
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The following figures (Figure 24, Figure 25, Figure 26, and Figure 27) show the empirical cumulative
density function (CDF) of the reconstruction error for the different compression ratios, and for
different quantisation levels when encrypting/decrypting the S1 data.
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Figure 24: Error for S1 when using 1-bit quantisation.
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Figure 25: Error for S1 when using 2-bit quantisation.
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Figure 26: Error for S1 when using 3-bit quantisation.
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Figure 27: Error for S1 when using 4-bit quantisation.

Observe that as the compression ratio increases, the error increases, as expected in such a CS
implementation. When the quantisation level increases, error increases because the bit-mismatch rate
of the generated keys (between S1 and BR) increases. However, in all cases, the error remains very
low.

We now present, in the following figures (Figure 28, Figure 29, Figure 30 and Figure 31), the
reconstruction error for S2, that is, when using key @, to (maliciously) decrypt data that have been

encrypted with key &, .
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Figure 28: Error for S2 when using 1-bit quantisation.
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Figure 29: Error for S2 when using 2-bit quantisation.
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Figure 30: Error for S2 when using 3-bit quantisation.

1
0.9 J =
0.8 =
0.7 (
0.6 -

A
750, 20%
0.5 25% 509 —

04 RN AW ™ i

0.3 =

S| )

0 0.2 04 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Error

CDF

Figure 31: Error for S2 when using 4-bit quantisation.

Observe in the above figures that the reconstruction error is extremely high, regardless the
guantisation level used. This is because S2, although is aware of the optimum block id of S1-BR, its
generated key (@,) is not able to correctly decrypt the ciphertext data. Figure 32 shows the CDF of
difference, as a percentage, between keys @; and &, for all measurements. For most cases, the
difference between the keys is at least 28%.
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Figure 32: Matrix difference between @, and &,.

Page 64 of (104) © RERUM consortium members 2016



Deliverable D5.3 RERUM FP7-ICT-609094

3 Networking Lab Trials

In this section we shift our focus on the evaluation of networking lab trials. In particular, the section
presents results on the performance of: i) the adaptive CS-based data gathering (Sec. 3.1), ii) the sensor
self-monitoring component (Sec. 3.2), iii) the lightweight spectrum sensing component (Sec. 3.3), iv)
the Cognitive Radio (CR)-based gateway (Sec. 3.4) and v) the BMFA multicast forwarding algorithm for
6LoWPANS (Sec. 3.5).

3.1 Adaptive CS-based data gathering

3.11 Purpose of the experiment

The purpose of this experiment is to evaluate the Adaptive Compressive Sensing (ACS) scheme in the
lab environment. The ACS adapts its compression rate based on the estimated reconstruction error.
So, if the error increases, then the compression rate is reduced, and vice-versa. A detailed description
of the algorithm can be found in RERUM Deliverable D4.2 [RD4.2].

3.1.2 Experimental setup

The experimental setup consists of a RERUM Gateway (GW) communicating with a RE-Mote device,
through a Zolertia (Z1) border-router. Initially, RERUM GW requests data without any compression.
These data are later loaded in the RE-Mote and compressed using the ACS scheme, so as to achieve an
accurate evaluation. The software developed for the RERUM GW and the RE-Mote are described in
RERUM Deliverable D5.5 [RD5.5].

Initially, the RE-Mote device collects sensory data without performing any CS compression, and this
data are stored in RERUM GW. In the next phase, the stored data are sequentially compressed using
CS and transmitted to the RERUM GW. Later on, ACS operates, selecting the appropriate compression
rate when signal sparsity (compressibility) changes.

3.1.3 KPIs

The KPIs measured in this experiment are as follows (see also evaluation criterion AL.EF.6 in RERUM
Deliverable D5.1 [RD5.1]):

- The reconstruction error defined as e = ||x — X||,/l|x||,, where x and X are the original and
reconstructed signals, respectively, and ||. ||, stands for the £, norm.

- The detection probability that gives the number of sparsity detections over the total number
of sparsity changes.

- The false alarm rate defined as the ratio of the false alarms over the total duration of the
experiment in terms of the number of blocks.

- False negatives that are the number of missed detections over the total duration of the
experiment.

- The average detection delay defined as DD = Zf:l Ab(i)/S, where S is the total number of
sparsity changes, and Ab(i) the interval, expressed in number of blocks, between the true
sparsity change, and the corresponding sparsity change detection.

3.1.4 Performance evaluation

The ACS scheme uses a change-point detection algorithm (CPM), used to detect the sparsity changes.
An important characteristic of this algorithm is the average run length (ARL) that expresses the average
number of observations between two false positives. In the subsequent experiments, we use three
values for the ARL: 100, 500, and 1000. Furthermore, we compare the evaluation of the ACS scheme
with a non-adaptive one.
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We begin the evaluation by showing in Figure 33 the cumulative density function (CDF) of the
reconstruction error e, for the two approaches, and for the various ARL values. The solid curves
correspond to the proposed adaptive scheme, while the dashed ones correspond to the non-adaptive
strategy. It is clear that the adaptive scheme substantially outperforms the non-adaptive for all ARL
values. Also, the more sensitive the CPM algorithm is, the less erratic the signal decompression is. This
happens because of the decreased delay in the sparsity-change detection phase of the CPM that
enables a fast adaptation of the compression rate. As a result, more than 90% of the blocks have a
normalized reconstruction error of 0.01, for ARL = 100.
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Figure 33: CDF of the reconstruction error for large intervals between the sparsity changes

0.95
0.9
0.85}
0.8}
8 075
(&)
0.7}
Adaptive CS (ARL = 100)
0.65} Adaptive CS (ARL = 500) B
Adaptive CS (ARL = 1000)
o6r | em——- Non-adaptive CS (ARL = 100) |
----- Non-adaptive CS (ARL = 500)
085 Non-adaptive CS (ARL = 1000) | |
05 | | | | |
0 0.2 0.4 0.6 0.8 1 1.2

Figure 34: CDF of the reconstruction error for short intervals between the sparsity changes.

In order to investigate the behaviour of the proposed scheme for the frequent sparsity changes, we
change the interval (in number of blocks) between two successive sparsity changes so that it is
uniformly chosen in [10,15]. The CDF of e is presented in Figure 34 for ARL values in {100,500, 1000}.
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In this case, observe that the performance of the adaptive CS scheme degrades for all three values of
ARL, especially for lower sensitivity of the CPM (ARL = {500,1000}). This is normal, since the CPM
statistic is unable to converge to a flat value, due to the low number of initialization samples, resulting
in an increased number of the false negatives. However, even in this case, more than 90% and 82% of
reconstructed blocks, for ARL = 100 and ARL = {500,1000}, respectively, exhibit reconstruction
error lower than 0.01. Additionally, ACS still outperforms the non-adaptive scheme that uses a
constant compression rate for all compressed blocks.

In the next figures, we present the evaluation in terms of the detection probability (Figure 35), false
alarm rate (Figure 36), false negatives (Figure 37), and the sparsity detection delay (Figure 38),
considering two types of experiments: (i) EXP1 where there is a long interval between the sparsity
changes, and (ii) EXP2, where this interval is short. As expected, as CPM sensitivity decreases,
detection probability (Figure 35) also decreases, while the false negatives (Figure 36), and the
detection delay (Figure 37) increase, for both experiments. For example, for EXP1, the detection
probability is more than 94% for ARL = 100 and 80% for ARL = 5000, while the false negatives
change from approximately 0.002 to 0.008 false negatives/data block. The false alarm rate (Figure 38)
remains low for all cases, mainly due to the accurate sparseness of the synthetic signals.
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Figure 35: Sparsity change detection probability.
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Figure 37: Sparsity change detection delay.
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Short intervals between sparsity changes degrade the detection probability and increase the false
negatives of the adaptive scheme, since the sample size for the CPM initialization after each sparsity
change detection is rather small for the statistic to be accurately estimated. For example, the maximum
detection probability (achieved in both experiments for ARL = 100) reduces from 94% to 70%, (Figure
35). As Figure 37 shows, there is a slight difference in the sparsity change delay between the two
scenarios, with EXP1 requiring one data block more by the average to detect sparsity changes, for all
the ARL values.

Finally in the next three figures (Figure 39, Figure 40 and Figure 41), we show the timeliness of the
CPM algorithm when sparsity changes occur, for the various ARL values, and for EXP1 (we get
analogous results for EXP2). Observe in the following figures that the delay for the CPM to react
(denoted by the dotted lines), is relatively low (in terms of the number of blocks).

ARL=100

0.22

Block sparsity

e

o [ i )

1 1w 1
100 150 200 250
Block id

Figure 39: Sparsity change detection for ARL=100.
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Figure 40: Sparsity change detection for ARL=500.
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Figure 41: Sparsity change detection for ARL=1000.

3.2 Sensor self-monitoring

3.21 Purpose of the experiment

The goal of the experiment is to test in a real-world environment the performance of the self-
monitoring component of RERUM. The theoretical description of the module was presented in RERUM
Deliverable D3.1, while the implementation of the component on the RERUM Devices (RDs) is
described in D5.2 and D5.5. The objective of the self-monitoring mechanism is to present a powerful
component that will be able to gather in a simple and efficient way both network and device statistics
from the RERUM Devices (RDs). These statistics are sent to the RERUM Gateway that forwards them
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to the centralized RERUM MW. There, the statistics are gathered by the Resource Monitor and the
Alert Processor for identifying possible problems with the network mechanisms (i.e. channel
assignment, routing) or with the devices themselves (i.e. device is shut down) and try to resolve the
issues. In this respect, the devices gather both types of statistics and periodically sends them to the
MW in a period that can be assigned remotely and can be either static or variable.

The experiment aims to be a first step of testing the mechanism on real devices and assess its efficiency
before it is run on the trials. The mechanism is tested only on Zolertia RE-Motes that are playing the
role of the RDs. The mechanisms to gather the statistics are implemented on Contiki and installed on
the devices (see D5.2 and D5.5). The experiment focuses only on gathering and transmitting these
measurements/statistics and not on the server-side exploitation of these statistics. Furthermore, the
test includes the running of the mechanism for different network states to show the performance of
the RD when the network is congested, when there is interference in the wireless channel, etc.

3.2.2 Implementation details

The module that gets the statistics and transmits them to the MW (or to the server) is implemented
as a resource within the RD Adaptor and a Service is exposing this Resource on the MW. More details
regarding the implementation of the self-monitoring component can be found in D5.2 and D5.5.
Briefly, there are many statistics that can be measured via this component:

e Device statistics
o Network statistics

o ICMP: number of received, dropped and sent packets.

o IP: number of received, sent, forwarded and dropped packets.

o Linklayer: number of packets that are too long, too short, badly synced, with bad CRC,
transmitted, received and number of collisions.

o TCP: number of packets received, sent, dropped, reset, with acknowledgment errors,
with checksum errors, retransmitted, number of synchronization errors and number
of synchronization resets.

UDP: number of packets received, sent, dropped and with checksum error.
RPL: various statistics that are not of importance here, since the project does not work
on modifying RPL.

o ND6 (neighbour discovery): various statistics regarding number of sent, received and
dropped packets.

3.2.3 KPIs

The KPIs that will be measured within this experiment are the following (see also evaluation criterion
AL.EF.6 in RERUM Deliverable D5.1 [RD5.1]):

- Network statistics: the experiment involves the collection of link layer, IP layer and UDP layer
statistics.

- Device statistics: only the chip temperature is collected, since the measurement of the energy
consumption of the device can’t be done accurately with a software application.

- The communication overhead (increased signalling) for transmitting the statistics will be
calculated. This KPI shows how much load the self-monitoring mechanism itself causes to the
wireless spectrum.

- The performance of the device under various network loads and interference: The goal here is
to show how the network measurements fluctuate under different types of network load and
how responsive is the self-monitoring mechanism.
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3.24 Experimental setup

The setup of the experiment is a very simple one as it can be seen in Figure 42. There is a RE-Mote
device playing the role of the RD that we want to monitor. This device is connected wirelessly with a
RERUM GW that is in turn connected to the RERUM Middleware. In the same area of the RD there are
also standard WiFi networks operating, which may create interference and this is something that we
want to exploit in order to collect the statistics under various amount of interference. In order to get
the measurements, we used a Java Californium® program that plays the role of the CoAP client and
accesses a CoAP Resource. The resulting data stream (with the network measurements) flows through
the GW and the MW and is stored in a txt file for further processing. In a similar way, the actual network
statistics can flow towards the MW’s components, namely the Resource Manager and the Alert
Processor in order to identify the current available network resources of the RD (and see i.e. how many
requests it can handle). These statistics can also be used to raise alerts in case of i.e. high network load
in order to execute mitigation procedures like channel re-assignment and change of routing tables.

fwd measurements

IEEE 802.11

= measurements

GW D1

IEEE 802.15.4

Figure 42: Experimental setup for network monitoring.

3.25 Evaluation results

The experiments were run both in a semi-controlled environment, and in an uncontrolled
environment. In the first case, the load of the external WiFi access point that causes interference to
the RD is controlled and is set in three different levels: low, medium, high. In these three experiments,
the setup of the RD was to use an entirely different (not overlapping) channel (so that no interference
is caused by the WiFi), to use an adjacent channel (so that low/medium interference in caused) and to
use an overlapping channel, on which high interference is caused on the RD. In the case of the
uncontrolled environment, the RD was tested at FORTH’s TNL lab and the RD was using an overlapping
channel with FORTH’s public AP, which handles many users and has variable load. Furthermore, in
order to ensure that there is also a continuous type of traffic from the RD, we used backbone ICMP
traffic with packet interval of 2 seconds.

Below we present the results for these cases for various measurements. In Figure 43, we show the
number of packets with link layer collisions, in Figure 44 the number of packets with bad CRC, in Figure
45 the number of transmitted and received link layer packets and in Figure 46 the IP layer transmitted

3 http://www.eclipse.org/californium/
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and received packets. As expected, when the external traffic is high, the monitoring component
reports a lot of bad CRC errors and a lot of collisions due to the strong interference that the wireless
link is suffering.
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Figure 43: Packets with bad CRC under various load.
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Figure 44: Number of collisions under various load.
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link layer and IP packets transmitted
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Figure 45: Number of link layer and IP packets transmitted under various load.
link layer and IP packets received
3500 i
3000 T -
P - -
= : -~
2500 — 22 i
2000 2%
1500
1000
500
0
0 500 1000 1500 2000 2500 3000
= = =link_low link_medium = = =link_high = = =link_uncontrolled
——|P_low IP_medium —— |P_high —— |P_uncontrolled

Figure 46: Number of link layer packets received under various load.

In Figure 47, we show a trace of Wireshark for the packets that are transmitted by the self-monitoring
mechanism. In the figure, there are two types of packets, the ICMPv6 packets and the COAP packets.
The first ones are the packets that are exchanged via the pingé command (for the background traffic
as explained before), while the COAP packets are those of the self-monitoring mechanism. As
mentioned above, we are gathering three types of measurements, for link layer statistics, for IP
statistics and for chip temperature. Hence, there are three COAP packets depicted in Figure 47. As it
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can be seen, these packets are very small with a size that varies between 110 and 150 bytes, which

shows the lightweight characteristic of the self-monitoring mechanism.

Source Destination Protocol Length Info
fBlaaaa::1 @aaa::212:4b00:615:aa ICMPVE 104 Echo (ping) request id=8x3b5e, seq=3282
PBlaaaa::212:4b00:615:aafl aaaa::1 ICMPV6E 104 Echo (ping) reply id=8x3b5e, seq=3282
BBlaaaa::1 3aaa::212:4b00:615:aa ICMPv6 104 Echo (ping) request id=8x3b5e, seq=3283
@Blaaaa::212:4b00:615:8af0 aaaa::1 ICMPv6 104 Echo (ping) reply id=6x3b5e, seq=3283
00(aaaa: :212:4b&8:615:aaf9.aaaa: o b COAP llaéllon-l:onfimable, 2.85 Content, End of Block #93
00laaaa: :212:4b00:615:aaf® aaaa::1 COAP 112 Non-Confirmable, 2.85 Content
@Blaaaa::1 aaaa::212:4b00:615:aa ICMPvE 104 Echo (ping) request id=8x3b5e, seq=3284
0Blaaaa::212:4b00:615:aaf0 aaaa::1 ICMPV6 104 Echo (ping) reply id=8x3b5e, seg=3284

158 Non-Confirmable, 2.05 Content, coap://] [{a[{az[y]

:212:4b00:615:aa ICMPvE

@B8laaaa::1 aaaa: 104 Echo (ping) request id=8x3b5e, seq=3285
0Blaaaa::212:4b00:615:aaf0 aaaa::1 ICMPV6 104 Echo (ping) reply id=8x3b5e, seg=3285
fBlaaaa::1 3aaa::212:4b00:615:aa ICMPVvE 104 Echo (ping) request id=8x3b5e, seq=3286
B0laaaa: :212:4b00:615:8af0 aaaa::1 ICMPvE 104 Echo (ping) reply id=08x3b5e, seq=3286

rtes on wire (1200 bits), 150 bytes captured (1200 bits) on interface @

Figure 47: Wireshark trace of self-monitoring packets.

Figure 48 shows the communication overhead of the self-monitoring mechanism over several
experiments. The communication overhead is shown against the background traffic that is created via
ping for different intervals of the ping packets from 0.5 to 4 seconds. The monitoring packets are sent
every 30 seconds. This is the minimum interval allowed currently by the monitoring mechanism to
avoid flooding the network with messages. We can see that the communication overhead rises to
almost 25% when the ICMP packets are sent scarcely. In the cases when the ICMP packets are sent
very frequently, the percentage of the monitoring packets is very low. In general, each monitoring
statistic is sent with one CoAP packet every 30 seconds (in the worst case), which is not creating a
significant load in the network. We can therefore assume that the self-monitoring mechanism is
lightweight.

Communication overhead

25
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15
| I I
0 I .
4 3 2 15 1 0.5

ping interval (s)

(6]

percentage of monitoring packets

Figure 48: Communication overhead of self-monitoring.
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3.3 Lightweight spectrum sensing framework

3.3.1 Purpose of the experiment

The goal of this experiment, as described in RERUM Deliverable D5.1 [RD5.1], is to evaluate in a
controlled laboratory environment the efficiency of the lightweight spectrum sensing framework that
was developed within Task 4.1. The target modules to be evaluated are those for gathering spectrum
occupancy measurements and modelling the spectrum occupancy. The theoretical description and the
simulation results of these mechanisms are presented in detail in deliverable D4.1. Here, the goal is to
test the practical implementation of these mechanisms in a laboratory experiment, using real Software
Defined Radio (SDR) devices.

As a brief reminder, the spectrum sensing module aims to enable the Cognitive Radio-based RDs to
gather spectrum occupancy statistics in an energy efficient way, consuming as led energy as possible,
while keeping the accuracy of the statistics on a good level. Then, the module will extract models of
the spectrum occupancy at specific bands of interest. The minimization of the energy consumption by
the RDs for spectrum sensing is achieved by identifying an “optimum” period for sensing each band.
At the same time, we have to avoid sensing the bands very frequently because spectrum sensing is a
process that consumes a lot of energy.

For the realization of the experiment scenario and since Cognitive Radio mechanisms cannot be run
on existing sensor platforms, Software-Defined-Radio (SDR) devices and the GNU Radio platform were
used. GNU Radio* is an open source platform that is part of the GNU project. The core of the platform
and the demanding signal processing tasks are performed using C/C++, where tasks like input and
output connections are accomplished using Python. The approach of GNU Radio signal processing is
based on multiple data streams. Each stream may be the output of a processing unit called block or
the input to another processing block. GNU Radio is compatible and supports multiple hardware SDR
devices like Universal Software Radio Peripheral (USRP), BladerRF, HackRF and others. One of the most
attractive features of this platform is that allows developers to add easily their own modules, extending
the capabilities of the platform. Furthermore, the large, active and growing community makes GNU
Radio and ideal choice of an SDR platform.

The following sections provide details for the implementation and evaluation of the Dyna-Q
Reinforcement Learning algorithm described in D4.1 [RD4.1], utilizing the GNU Radio platform.

3.3.2 Implementation details

The GNU Radio block takes as input integer samples that correspond to the PU spectrum state at the
i-th time-slot. The block is configured using a set of necessary parameters, depicted in Figure 49.

The ¢ parameter corresponds to a threshold that indicates the tolerance of the system with respect
to the PU being in a different state than the one observed during the start of the observation period.
The M parameter is the duration in time-slots of the largest available period. The sense cost parameter
is the energy cost of the SDR device for sensing the spectrum at a single time-slot, whereas the penalty
parameter represents the energy cost induced to a SU due to inaccurate collection of spectrum
occupancy data.

As long as the block is provided with spectrum occupancy samples, the algorithm converges to the
optimum spectrum period, targeting the best energy efficiency. When the user terminates the learning
process, the block provides two different optimum sensing durations. The one corresponds to the
optimum sensing period when the PU is not transmitting, while the second one indicates the optimum
sensing period when the PU utilizes the medium.

4 http://gnuradio.org/redmine/projects/gnuradio/wiki
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General | Advanced Documentation Generated Code

D tnl_dynag_smdp_0
Phi 1
M parameter 100
Sense cost 1.0
Penalty -10.0
¥ 0K @ cancel

Figure 49: SMDP Q-Learning GNU Radio block parameters dialog.

A code snippet from the algorithm’s GNU Radio implementation is presented in Snippet 1. The work()
method is a special method of GNU Radio that is called by the scheduler whenever enough processing
items are available. The available input items during a work() invocation are obtained through the
noutput_items input parameter. The in pointer refers to the available input spectrum occupancy
samples, whereas out_0 and out_1 are the estimated best spectrum periods when the PU is inactive
and active respectively. The d_distribution is a uniform random generator engine that produces
random numbers in the range of [1, M]. In addition the d_dynaq_state is a structure that holds various
values necessary for the functionality of the algorithm. At every available input time-slot, the GNU
Radio processing block assigns a reward or a penalty depending on the current and previous spectrum
states and updates the best estimated sensing periods during absence or presence of the PU.

int
dynag_smdp impl::work (int noutput items,
gr_vector const void star &input items,
gr vector void star &output items)

int 1i;

size t Jj;

float e;

double reward;

double a;

const uint8 t *in = (const uint8 t *) input items[0];
float *out 0 = (float *) output items[0];

float *out 1 = (float *) output items[1];

for (i = 0; 1 < noutput items; i++) {
if (!d action slots) {
init mdp (&d dynaq state, in[i]);
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}

e = d distribution e (d _rnd gen e);

/* NON uniform sampling */
if(e < d e) |
d a = d distribution (d_rnd gen);

d action slots = d a - 1;
d action reward = 0.0;

else/{

}

out 0[i]
out_1[i]

}

/* Update MDP structure according to the spectrum state */
d dynag_state.b p = d dynaqg state.b c;
d dynag state.b ¢ = in[i];

if (d dynag state.b p == d dynag state.b c) {
d dynag_state.n_a++;

}

else {
d dynagq state.n a = 1;

}

d dynag_state.n c++;

if (d dynag state.b c != d dynag state.b i) {
d dynaq state.n wt++;
}

if (d dynag state.n w == d phi && d dynag state.n phi == 0)
d dynag state.n phi = d dynaq state.n c;
}

d action slots--;

update D(d dynaqg state);
a = get a(d dynag state);

/* Perform immediately intra-option learning */
if (d dynag state.n phi) {
update Q penalty(d dynaqg state, a, d dynaqgq state.b c);
}
else {
update Q reward(d dynaq_state, a);
}

(float) max Q index (0);
(float) max Q index (1);

// Tell runtime system how many output items we produced.
return noutput items;

333

The KPIs that are measured within this set of experiments are the following (see also evaluation

Snippet 1: GNU Radio implementation of spectrum sensing algorithm.

KPIs

criterion AL.PE.7 in RERUM Deliverable D5.1 [RD5.1]):

- Speed of convergence to the identified period for spectrum sensing:
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o This KPI shows how fast the algorithm converges to a specific period. Theoretically,
the Q-Learning algorithms converge in infinite time. However, practically the
convergence time can be very high. The goal of the experiments is to show here that
with the modifications that we did to the Q-Learning algorithm, our version converges
very fast.

- Comparison of the identified period with regards to the “optimum” period:

o This KPI will show how close is the period that our algorithms finds with regards to the
“optimum” period (which is found when the standard algorithm is run for a very long
time). This will prove that our algorithm not only converges very fast, but also the
period that it finds is very close to the optimum one.

- Energy consumed for sensing using the optimum period.

3.3.4 Experimental setup

The experiment involves only one SDR device that plays the role of the RD, running the implementation
of the mechanism for lightweight spectrum sensing as presented above. Then, this RD senses the
spectrum at specific spectrum bands, in order to identify the optimum period for sensing. However,
since this experiment will be executed at indoor environments and the RD will select to sense spectrum
fragments at the TV-bands (below 900MHz) it will be difficult to sense accurately real transmissions
and to know their transmission model in order to evaluate if the spectrum occupancy model extracted
by the RD is accurate. Thus, for the sake of the experiment and to be able to make a proper evaluation
of the results, another SDR device will be used to play the role of a licensed user that transmits
according to pre-defined models at a specific spectrum band.

To validate the algorithm, we used the flow-graph of the implementation of the spectrum sensing
module using GNU Radio as depicted in Figure 50. This flow-graph receives time domain samples from
the SDR device and performs frequency transformation using a Fast Fourier Transform (FFT) block.
Then it computes the energy of the result and groups the samples into the corresponding time-slots.
If the mean energy of each time-slot is above a user-defined threshold the flow-graph propagates a 1
to the Q-Learning block, indicating that this time-slot was an ON period and the PU was transmitting
(spectrum band occupied). Otherwise, the Q-Learning block receives a 0, which means that the
spectrum band is free. When the flow-graph stops, it provides the optimal period duration estimated
for the ON and OFF spectrum states respectively.

Variable Variable Variable Variable

ID: slot_duration ID: energy_threshold_db 1D samp_rate 1D: fit_size

Value: Tm Value:-60 Value: 4M Value: 64
The duration of each time-slot in seconds The energy threshold.

Above this threshold a PU transmission is considered.

UHD: USRP Source FFT
Samp Rate (Sps):4M FFT Size: &1

Cho: CenterFreq (Hz): 2 412G Stiream 1o Vector Forward/Reverse: Forward Complex o Mag"2 Vecior fo Siream
Ch0: Gain Value: 15 Num ltems: 64 Window: window.blackmanhar... Veclength: 64 Mum ltems: &4
ChO: Antenna: RX2 Shift:Yes

Cho: Bandwidth (Hz): 4M Num. Threads: 1

Float To UChar

[

SMDP Q-Learning
Phi: 1

M parameter: 100
Sense cost: 1
Penalty.-10

Threshold
Lcw‘t‘\eﬂsk ° ool Decimating FIR Filter
High: -60 o n:10 H Decimation: 1

Initial State: 0 =0 Taps:

Figure 50: SMDP Q-Learning algorithm GNU Radio flow-graph.

3.35 Experimental scenarios
The scenario run in the experiment is described below.

- The RD is an SDR-based device (laptop with an SDR card) capable of sensing a wide spectrum
band.
- The licensed user is another SDR device that has a specific transmission model.
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- The RD will start sensing the spectrum band that is only used by the licensed user according to
the spectrum sensing mechanism.

- After an amount of time the RD will have converged to the optimum sensing period and will
have extracted a model of the transmission of the licensed user (depending on the
characteristics of the model).

- The speed of convergence to the optimum period in terms of time (number of timeslots) will
be assessed.

- The energy consumed until the convergence will be measured together with the energy
consumed for each period of sensing.

3.3.6 Energy measurements

One of the key parameters of the Q-learning algorithm is the energy cost induced by sensing the
spectrum for the duration of a time-slot. This cost is highly correlated with the hardware device that is
used, the bandwidth of interest and the RF gain.

The SDR device chosen to be used was the Nuand bladeRF® that has the advantage of using a USB 3.0
port which can be bypassed for the power supply with an external adapter. For this purpose, it provides
two special jumpers on board that reroute the power source input. Unfortunately, a small amount of
power is still drawn from the USB port, but only to provide power to the USB interface chip. The FPGA
and RF segments of the board may be powered by an external dc adapter. In order to provide a stable
external power source, we used the AXIOMET AX-3003D-3 bench DC power supply as a constant
voltage source [Voltage stabilization <0.01% + 1mV]. For the DC voltage and current measurements,
we used the UNI-T UT61E multimeter with 22000 counts resolution and +0,1% voltage & +1,2% current
accuracy respectively.

We first fixed the voltage to 4.99V and then we used the multimeter in a series with the power source
electrical circuit. Therefore, we were able to measure with high accuracy the current flowing towards
the device.

Table 33: Current measurements of BladeRF at 4 MHz bandwidth.

RF Gain (dB)
Operation Mode |0 10 15 20 25
RX 498 mA 508 mA |[508 mA 508 mA |508 mA
TX/RX 540 mA 561 mA [583 mA 625 mA 692 mA

Table 34: Energy of BladeRF at 4 MHz bandwidth.

RF Gain (dB)
Operation Mode |0 10 15 20 25
RX 2.485W 2534 W 2534W |2534W |2.534W
TX/RX 2.694 W 2.799W |2909W |3.118 W |3.453 W

During our power measurement, the power source voltage was 4.99 V and the bandwidth 4 MHz. This
is the bandwidth utilized by the IEEE 802.15.4 telecommunication standard. The resulting current
values for different setups of RX RF gain can be retrieved from Table 33. This table also provides the
energy measurements when the device is concurrently transmitting a signal at 4 MHz bandwidth. In
addition, Table 34 provides the energy consumption in Watts.

5> http://nuand.com/
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3.3.7 Evaluation results

3.3.7.1 Optimum period vs penalty

As described in deliverable D4.1 [RD4.1], the key parameters of the lightweight spectrum sensing
algorithm are the sensing cost e. and the penalty E. induced by a wrong estimation of the PU spectrum
state. For the e., we used the normalized energy consumption for the device to perform spectrum
sense during a time-slot, with the RF gain of the SDR device configured at 15 dB. The penalty E.
corresponds to the energy that will be spent for the device to find a new available channel among the
16 different plus the energy that is required for switching to the new target frequency. Because the
frequency switching energy overhead is very difficult to be computed, we consider only the energy
cost for the search of a new idle channel.

Assuming that in order to decide if a channel is idle or not a sensing period of two time-slots is needed
the penalty is:

E. = #numcpanners * 2 * €. = 32 * e;

The E.value greatly affects the learning algorithm. Small penalty values will allow the algorithm to
converge to larger sampling periods. On the other hand, large penalty values will force to algorithm to
be more conservative and try not to erroneously predict the spectrum state, hence it will converge to
smaller sampling periods. This behavior is depicted in Figure 51.

71 OFF Period
[ ON Period

Best Sensing Period (in time-slots)

0 Illll-llllllll IIIIIII| IIIIIII|

-40 -30 -20 -10
Penalty

Figure 51: Sampling periods for different E. penalty values.

3.3.7.2 Optimum period convergence speed

To validate the algorithm we used the flow-graph of depicted in Figure 50. This flow-graph receives
time domain samples from the SDR device and performs frequency transformation using an FFT block.
Then it computes the energy of the result and groups the samples into the corresponding time-slots
using an FIR filter for the purpose of a moving sum. The resulting samples are then passed through the
Threshold block. This block produces a “1” at its output port whenever the mean energy of the
corresponding input time-slot is above a user-defined threshold indicating that during this time-slot
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the PU was active. Otherwise the output is “0” which is a direct indication that the PU was idle and the
medium was free. Then the resulting samples of the Threshold block are properly transformed into the
desired 8-bit integer form and are driven towards the Q-Learning block.

As an initial step, we conducted an experiment to retrieve the optimal spectrum sensing periods for
both active and inactive PU state. For this reason we used a block that generates artificial spectrum
occupancy data. The active PU periods are generated using a random geometric distribution with a
mean of value 10. On the other hand, the inactive periods of the Primary User (PU) follow also a
random geometric distribution with a mean value of 70. Based on the fact that the algorithm will
converge to the optimum results with probability “1”, we let the experiment to run for several hours
in order to get the best possible results.

Table 35: Q-Learning results for ec=1 and E.=32.

PU State Optimum sampling period (in time-slots)
OFF 11
ON 45

Assuming a normalized sensing cost e. equals to “1”, the penalty E. based on the penalty estimation
equation previously discussed is equals to 32. The resulting optimum sampling periods after a long
running experiment are presented in Table 35.

MAPE

T TT | T T TT | T TTT | T T TT | T T TT | T T T1 | T T T1 | T T T1 | T T | T T |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
# Rounds

Figure 52: Q-Learning convergence.

However, these results alone have limited importance. The actual performance of the algorithm is
based on the speed of convergence towards the optimum spectrum sensing periods. To evaluate the
convergence rate we use the Mean Absolute Percentage Error (MAPE) that is calculated at the end of
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each sensing period of the algorithm. After a warm-up period of 1000 rounds the MAPE is depicted in
Figure 52. This plot reveals that the algorithm has a relative small error below 15% even after a few
hundreds rounds after the beginning of the experiment. After 3000 rounds the error is below 10%. This
indicates that the algorithm has a very satisfactory convergence rate towards the optimum solution
and thus it can run for a small period of time drastically reducing the power requirements. As a result
significant energy savings are gained not only from the learned periodic spectrum sensing periods, but
also from the short amount of time that the algorithm should be executed.

3.3.7.3 Energy consumed

Computing the energy that the CR-inspired RD consumes when it uses the proposed mechanism for
spectrum sensing is a rather simple task. Assuming that we have an antenna with 0 dB gain, we can
see from Table 34 that it consumes ~2.5Watts for the RX (which is also consumed for spectrum
sensing). Considering the nature of the proposed algorithm, the RX component of the RD can “sleep”
for many timeslots. The number of timeslots that it sleeps depends on the output of the algorithm,
which is the sensing period. Thus, it can be seen that for the specific experiments we run, the RD should
sense the spectrum either every 11 time-slots (if the spectrum was free) or every 45 time-slots (if the
spectrum was occupied). This means that if the spectrum was free, the RX component should sleep for
10 time-slots and then wake up in order to sense the spectrum again. Furthermore, if the spectrum
was occupied, the RX component will sleep for 44 time-slots and then wake up to sense the spectrum.
It can be realised easily that when the RX component “sleeps” it does not consume the energy
mentioned in Table 34. Thus, with the timeslot set as “1ms”, we can see that the RD saves
2.5W*10timeslots*1ms/timeslot=25W*ms=6.95*10E-6 Wh each time that the spectrum is found
unoccupied and 3.05*10E-5 Wh each time that the spectrum is found occupied.

3.4 CR-based gateway

This experiment tries to evaluate in a real deployment the performance of the Cognitive Radio based
loT gateway, which was described in Deliverable D4.1 [RD4.1]. The implementation of the CR gateway
can be realised either with one Software Defined Radio (SDR) for each one of the radio technologies
we want to utilize or by using only one SDR card that will emulate all technologies. The first case is the
easiest one and the simplest one, but the second case is more cost-efficient. In our experiments, we
have used two SDR cards, one for each of the wireless technologies to show the worst case in terms of
energy consumption. The CR-based loT gateway can be assumed as very important in loT, due to the
fact that it is controlled completely by software and can be utilized to serve many technologies
simultaneously, only by installing the required software. The antennas that are used span from few
MHz up to 6GHz so they can be used for many transmission technologies. Thus, in future loT scenarios
with RDs that apply Dynamic Spectrum Access mechanisms, this type of a gateway will be mandatory
to ensure an efficient interconnection of RDs with diverse and heterogeneous types of traffic and
different technologies. More details regarding the actual implementation of the CR-based gateway can
be found in D4.1 [RD4.1].

3.4.1 KPIs
The KPIs that will be measured within this experiment are the following:

- CPU and RAM utilization for each of the networking technologies and under various types of
load: the goal here is to see how the load of the networks affect the resources of the CR-based
gateway. This can be also seen as a metric of the scalability of the device, because a high
increase of either CPU or RAM with an increase in the traffic load will show that the
performance of the gateway can be very limited.

- Power consumption: this KPI will show how much is the power consumption of the device and
how this power consumption changes depending on the network traffic in both wireless
technologies.
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3.4.2 Experimental scenarios

The experimental setup is shown in Figure 53 below. There are two RDs, one being connected with a
IEEE 802.15.4 interface (the Zolertia RE-Mote) and another one connected with a standard IEEE 802.11
interface (laptop or smartphone). These devices are connected with the SDR-based gateway, which
can route traffic between these technologies, as well as with the RERUM MW through an Ethernet
connection.

For the evaluation of the CD-based IoT gateway we run the following three experiments:
Experiment A:

In this experiment, only the 802.11 device was running, sending measurements and background traffic
to the GW and we measured the performance and the energy consumption of the gateway.

Experiment B:

In this experiment, only the RE-Mote connected with 6LoOWPAN was operating. The RE-Mote was
running a firmware that enabled it to become a web-server that allowed the MW to ask for various
amounts of UDP-based traffic. That way we were able to perform the experiment and test the
performance of the gateway for different loads of traffic.

Experiment C:

In this experiment, both the 802.11 and the 6LoWPAN devices were operating and we tested the
performance of the gateway for various types of traffic load when it was serving both technologies.

MW

ethernet

eeg0r 1 GG (Ec:202.15.4

~ -®

measurements

measurements GW

D1

D2

Figure 53: Topology of the SDR-based gateway experiment.

In all the experiments, we used three loads of traffic (i) low, (ii) medium and (iii) high traffic. This traffic
was generated through the cURL software accessing the web server at the RD for the 802.15.4: low
traffic (20%), medium traffic (50%) and high traffic (80%). In case of 802.11 the traffic was generated
through video streaming (low traffic, of the packet or (in case of 802.11) via video streaming of
different quality videos (240p, 480p, 1080p).

3.4.3 Evaluation results

The results of the performance evaluation are given in Table 36 for each one of the three experiments.
It has to be noted here that the values in the table correspond only to the real operation of the CR
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gateway software and not of any other software that runs on the device. Thus, these results show only
the overhead of running the SDR gateway under various conditions.

Table 36: CR-based gateway performance results.

Measurement Experiment1 | Experiment 2 Experiment 3
(802.11) (802.15.4) (802.15.4 + 802.11)
Memory consumption (low) 199916 KB 154044 KB 353960 KB
Memory consumption
(medium) 199916 KB 154044 KB 353960 KB
Memory consumption (high) 199916 KB 154044 KB 353960 KB
CPU percentage (low) 7.00% 6.00% 13.00%
CPU percentage (medium) 7.00% 6.00% 13.00%
CPU percentage (high) 9.00% 6.00% 15.00%
Consumption (low) 51W 45W 56W
Consumption (medium) 53w 45W 56W
Consumption (high) 54W 45W 59W

The first thing that one can notice is that the memory consumption of the gateway remains the same
regardless the amount of traffic that the RDs produce. It can also be seen that the 802.11
implementation uses 45MB of RAM more than the 802.15.4 implementation and that when both
interfaces run simultaneously, the amount of RAM that the gateway uses is equal to the sum of the
memory consumption that the interfaces use when they run as standalone components. This is quite
reasonable, because each interface technology runs as a separate software component, so it uses a
specificamount of memory when it runs, regardless if it runs together with other software components
or not. It has to be noted here that the required amount of memory (i.e. 350MB) is only a small
percentage of the available memory of the PC that plays the role of the gateway (16GB of RAM) so of
course the two software components do not compete for the free memory.

In terms of CPU consumption, it can be seen that both for 802.11 and 802.15.4 the required CPU is
quite low (7% and 6% respectively) in low and medium traffic. What is interesting is that the CPU
consumption for 802.15.4 remains the same even if the traffic is high, while for 802.11 there is a small
increase in the CPU usage (mainly due to the large number of packets that have to be decoded very
rapidly). When both interfaces run simultaneously, similarly as in the memory consumption, the total
CPU consumption is equal to the sum of the respective CPU consumptions of the standalone interfaces.

The last test was for the energy consumption of the CR-based loT gateway. In the table, the total
consumption of the PC that was playing the role of the gateway is displayed. It has to be noted that
the energy consumption of the PC when it is idle (not running anything) is 20W. We can see from Table
36 that the energy consumption of the 802.15.4 interface remains static regardless of the load, while
for the 802.11 the consumption increases slightly. The interesting note is, however, that when both
interfaces run simultaneously the total energy consumption is only slightly higher than that of the
802.11 interface.

As a general remark, the results show that the current implementation of the CR-based loT gateway
scales very well under load and it is very lightweight with very low memory, CPU and energy
consumption. However, due to the fact that we didn’t have many RE-Mote devices, we were not able
to test the scalability of the Gateway with regards to serving a large number of clients. This remains as
a future action.
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3.5 6LoWPAN Multicast

In scenarios involving point-to-multipoint network traffic, transmitting to each destination individually
with unicast leads to (i) poor utilization of network bandwidth, (ii) excessive energy consumption
caused by the high number of packets and (iii) suffers from low scalability as the number of
destinations increases.

3.5.1 Relevance to RERUM’s Use-Cases

For UC-02 - Environmental monitoring in particular, it is expected that networks will be formed by a
potentially very high number of RDs and therefore scalability is a requirement.

In cases when RDs are powered by batteries, it is impractical or outright untenable to replace batteries
very frequently due to high management cost and possibly hard-to-reach installation locations. Thus,
long battery life is important.

For devices powered from mains, low energy consumption is also important in order to reduce
financial cost, but also in order to comply with national and international regulations where applicable.
For those reasons, RERUM has designed and implemented the Bi-Directional Multicast Forwarding
Algorithm (BMFA) for 6LoOWPANSs.

3.5.2 Purpose of the experiment

The purpose of these experiments will be to demonstrate how M/W functions can leverage IPv6
multicast in order to improve network performance and decrease energy consumption, ultimately
increasing the lifetime of a smart object deployment.

The results from this experiment are part of the evaluation for the following evaluation criterion that
has been defined in deliverable D5.1 [RD5.1]:

e AL.PE.5 “6LOWPAN Multicast”

3.5.3 KPIs

This section presents a thorough performance evaluation of the BMFA and ROLL_TM multicast
forwarding algorithms, which were developed during Task 4.2 and introduced in RERUM deliverable
D4.1 [RD4.1].

More specifically, the KPIs that are measured within this set of experiments are the following:

e Suitability for embedded devices: by measuring code size and RAM footprint.
e Reliability: by measuring packet loss / packet delivery ratio. Target: This metric is highly-
sensitive to traffic rate, network topology, node configuration etc.

3.54 Experimental setup

Our thorough empirical campaign was conducted with five RE-Mote devices, with each one of them
running either BMFA or TM as multicast forwarding algorithm. We configured one node as a root, two
as 1-hop sinks, while another two devices as 2-hops sinks (Figure 54). We implement downstream
traffic, and thus, the root node transmits both in CBR (i.e., with time interval of 0.5 or 1 sec) and VBR
with random time interval between 0.5 and 2 seconds. Table 37 summarises the experimental setup,
as discussed throughout this section.
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Figure 54: Studied topology.

Table 37: Experimental setup.

Topology

Number of nodes

5 RE-Mote devices

Number of sources

1 root node

Studied protocols

BMFA / TM

Experiment parameters

Traffic pattern

CBR: 0.5, 1 sec
VBR: [0.5 - 2] sec

Number of events 100
Payload size 5/ 20/ 40 bytes
Routing RPL

MAC CSMA
Duty Cycling ContikiMAC
PHY IEEE 802.15.4

Hardware parameters

Antenna model

Omnidirectional CC2538

Radio Propagation

2.4 GH:z
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3.5.5 Performance evaluation

3.5.5.1 Code size and RAM footprint

Code footprint and RAM requirements are measured at compile-time. This is achieved by building a
firmware image and by subsequently running the toolchain’s -size command on object files. In this case
we ran the following command: $ arm-none-eabi-size obj_remote/(roll-tm.o / smrf.o / bmfa.o)

Table 38: Code size and RAM footprint in bytes for each algorithm.

Algorithm (filename) text data bss dec hex
obj_remote/roll-tm.o 3224 12 8114 11350 2c56
obj_remote/smrf.o 335 0 1335 1670 686
obj_remote/bmfa.o 1578 0 1335 2913 b61

Each roll-tm.o, smrf.o and bmfa.o modules are core of the implementation of the ROLL-TM, SMRF and
BMFA algorithms respectively. The results (Table 38) provide the following information about each
code module:

e Code footprint, including program memory and constant (const) expressions (text)
e Variables initialized at compile time (data)
e Space reserved for variables which are not initialized at compile time (bss)

As can be observed from Table 38, our proposed BMFA algorithm achieves the targets defined in D5.1
for the RE-Mote platforms. More precisely, both code size (i.e., text) and RAM footprint (i.e., data +
bss) present results below 3 KB for Multicast functionality when compared to ROLL-TM (> 3 KB and >8
KB respectively).

3.5.5.2 Reliability

For each multicast group, we calculate Packet Delivery Ratio (PDR) with the following equation:

M
Y. Ri
=
PDR=-"——
NxM
where N is the number of unique multicast datagrams sent by traffic sources to the group’s IPv6
address, M is the number of multicast group members and R; is the number of unique multicast
datagrams sent to this group and received correctly by node i. This equation is valid under the

assumption that multicast group membership remains unchanged throughout the multicast flow’s
entire lifecycle, which holds true in the experiments presented here.

PDR is an application layer metric and can take values in [0, 1]. Packet loss is calculated as 1 - PDR, thus
packet loss 0% is the equivalent of 100% PDR, which means that all multicast datagrams were received
correctly by all multicast group members.

The two graphs in Figure 55 and Figure 56 respectively, illustrate the results for three different
datagram transmission rates in multi-hop topology over ContikiMAC (i.e., 125ms sampling frequency).
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We should take into consideration that in tree topologies, TM has a comparative advantage since there
is path redundancy: a node may receive a multicast datagram from any of it’s potentially multiple
neighbours. We thus anticipated its packet losses to be considerably lower. Multicast traffic
transmission rates once again appeared to have minimal impact on the results and are thus averaged
out. Thus, TM presents comparative results in PDR regarding the 2-hops (see Figure 55) nodes.

Furthermore, investigating the behaviour of BMFA and TM schemes for different CBR and VBR values,
we observe that the shorter is the time interval (i.e., 0.5 sec) the less efficient is the TM algorithm.
Indeed the packet delivery ratio may vary between 70% - 50% for 1-hop and 2-hops respectively. On
the other hand, BMFA scheme presents more stable results (independently the packet size) for 1-hop
nodes, while for 2-hops nodes its performance is similar to TM algorithm.
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Figure 55: Reliability for 1-hop nodes.
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Figure 56: Reliability for 2-hop nodes.
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4 Lab trials of the traffic monitoring Use-Case

This section discusses lab trial testing of the traffic monitoring Use-Case. More specifically, in 4.1 the
results of the experimental evaluation of the battery drain of the participatory sensing android app are
presented, while in 4.2 the evaluation of the participatory sensing app in terms of CPU usage is
demonstrated. Subsection 4.3 evaluates the scalability of the server side implementation of the smart
transportation use case. Furthermore, in 4.4 demonstrates the experimental evaluation how the
stability of the android app is affected by the sampling period. Finally, Subsection 4.5 explores the
usage of the SNR measurement precision for the RERUM android application.

4.1 Android app power drain

4.1.1 Purpose of the experiment

These experiments aim to evaluate the battery drain of the RERUM traffic sensing app. Battery drain
is a key component of participatory sensing, since users will be reluctant to install apps that are causing
their phone battery to drain much faster than it would without the app.

4.1.2 KPIs

The performance metric is defined as time to depletion of battery.

4.1.3 Experimental setup/scenarios

Experiments are performed when the app is actively used and the GPS is continuously active. The
phone is continuously kept moving using a pendulum and a fan and the movement is large enough to
trigger the accelerometer movement detection, see [RD5.2] for a more detailed description of the
motion detection.

4.1.4 Evaluation results

Table 39 shows the results for a range of devices with different characteristics. The results heavily
depend on battery capacity, which is also indicated in the table. Note that the performance may vary
from device to device of same the model, with a window of 2 hours depending on location of the
device, availability of GPS fix, and number of state changes from active to sleep modes.

Table 39: Time to depletion of battery for different phone models when the app is actively used
with GPS continuously active and no other battery draining apps running.

Device Manufacturer Android Version Battery Battery Runtime
Nexus -5 LG 5.0.1 2300 mAh 36 hrs 10 mins
Nexus-4 LG 5.0.1 2100 mAh 33 hrs
Moto-E Motorola 442 1980 mAh 31 hrs
Moto-G Motorola 5.0.1 2070 mAh 34 hrs 36 mins

Galaxy Young 2 Samsung 4.4.2 1300 mAh 21 hrs 10 mins
Galaxy S5 Samsung 442 2800 mAh 44 hrs 23 mins
Galaxy S3 Samsung 4.3 2100 mAh 32 hrs
Xperia 22 Sony 5.0.1 3200 mAh 51 hrs 22 mins
Xcover 2 Samsung 4.1.1 1700 mAh 23 hrs 20 mins
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Galaxy Y Samsung 2.3 1200 mAh Not supported
One X HTC 4.1.1 1800 mAh 27 hrs
Desire 300 HTC 4.1.2 1650 mAh 23 hrs

Galaxy S Duos Il Samsung 4.4.2 1500 mAh 25 hrs 50 mins

Xperia E1 D2005 Sony 4.4.2 1700 mAh 26 hrs 20 mins

The results in Table 39 indicate that the battery drain of the app is not prohibitively high even if the
GPS is continuously active. Since GPS is one of the most battery-draining peripherals, most of the
battery efficiency improvements, described in more detail in [RD5.2], are based on reducing
unnecessary GPS usage.

4.2 Android app CPU

4.2.1 Purpose of the experiment

The aim of these experiments is to evaluate the participatory sensing app in terms of CPU usage.
Extensive CPU usage can cause impaired user experience, smartphone overheating and poor battery
lifetime.

4.2.2 KPIs
The KPI of this experiment is the CPU load of the RERUM device.

4.2.3 Experimental setup/scenarios

CPU usage is measured when the Android application is used in both the foreground and the
background (GUI minimized by the user), since the difference in CPU load for these different states
differs significantly. The foreground and background CPU load is measured using built-in functions in
Android studio.

In order to minimize battery consumption, the application will be running different processes in
different states of the application, e.g. depending on whether mobility is detected or not. To identify
how the CPU varies during different phases of the application the CPU usage has been monitored
separately for different phases. The different phases are idle, data sharing, GPS monitoring and
accelerometer monitoring. All phases are monitored when the application is in the foreground. Data
sharing means that data is transmitted to middleware servers, GPS monitoring means that the GPS
receiver is active to provide a location fix, and accelerometer monitoring means that the accelerometer
is active to detect mobility of the device.

CPU activity measurements for different phases of the application are collected using the android
application “OS Monitor” available in the android market [OSMON].

4.2.4 Evaluation results

For benchmarking, we have compared with average CPU usage for different application categories
running the application in foreground and background, respectively. The data is provided by M2 App
Insight [APPINS1] and shown in Figure 57. Note that the Foreground CPU usage is very high in
comparison to background CPU usage as foreground activities activate GUI processes, which are
usually high CPU consuming processes.

The average CPU usage by the RERUM traffic sensing application is shown in Table 40. It can be noted
that the foreground CPU usage of the application is quite low in comparison to almost all application
categories in Figure 57. The background CPU usage is similar to application categories with the highest
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CPU usage, which is expected for this type of application where mobility is monitored in the
background. However, an important result is that these levels of CPU should not cause any issues
related to impaired user experience or battery drain.

Average Foreground CPU Usage (By App Category)
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Figure 57: Average foreground CPU usage by application category (left) [APPINS1] and average
background CPU usage by application category [APPINS2].

Table 40: Average CPU usage for RERUM Traffic sensing app on different devices

Foreground Background
Device CPU

CPU usage CPU usage
LG Nexus 5 Quad core, 2260 MHz 7.64% 1.50%
HTC Desire 300 Dual-core 1 GHz 8.68% 3.03%
Sony Xperia M4 Aqua Quad-core 1.5 + 1.0 GHz 3.86% 0.44%
Motorola Moto G Quad-core 1.2 GHz 4.80% 0.78%
Samsung Galaxy S Duos Il Dual-core 1.2 GHz 7.62% 1.35%
Average 6.52% 1.42%

Example data of the variations of CPU load over time is shown in Figure 58, where a Nexus 5 phone is
monitored when you switch the application between foreground and background use of the app.
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Figure 58: CPU usage for the participatory sensing app on LG Nexus 5 comparing the usage as a
background application, and as a foreground application.

Table 41 shows the average CPU utilization for the processes related to different phases and it can be
noted that none of the different phases are causing extensive CPU load.

Table 41: Average CPU usage for different phases related to different sub processes of the app

Average CPU Utilization for sub processes
Device CPU Data GPS Accelerometer
Idle . - .. Total
Sharing monitoring monitoring
Quad core, 0 0 o o 0
LG Nexus 5 2260 MHz 2% 1% 0.5% 2% 7.5%
Sony Xperia Quad-core
v AP 1.5+1.0 1% 0.5% 0.5% 1% 3%
M4 Aqua
GHz
HTC Desire Dual-core 1 0 0 o o 0
300 GHz 6% 2% 3% 3% 14%
Samsung Dual-core
Galaxy“S Duos 12 GHz 5% 2% 2% 2% 11%
Moto G Q;‘.azd;:;e 3% 1% 1% 1% 6%
4.3 Server side scalability
4.3.1 Purpose of the experiment

The aim of these experiments is to evaluate the scalability of the server-side implementation of the
smart transportation use case. The experiments evaluate both the middleware interface and the traffic
application server, but not the middleware itself.

4.3.2 KPIs

The KPlIs for this experiment is the CPU load and memory usage of the application server.
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4.3.3 Experimental setup/scenarios

The interface between the traffic application server and the middleware is implemented using a
standard HTTP interface, see [RD5.2] for a more detailed description, and instead of pulling live data
from the middleware, the experiments are performed by pulling data from a temporary server that
generates more GPS observations.

In phase one of the Heraklion trials, approximately 30 buses transmitted two GPS locations every 30
seconds. For the experiments we have evaluated three different scenarios; 50, 500 and 5000 messages
per 30 second interval. One important part of the scalability of the system is related to the local
geofencing that is performed in the RERUM devices, which means that only devices within the
geofencing zones are actually transmitting data. In the trials so far, a rough estimate is that
approximately 10% of the vehicles are transmitting data at the same time, with this ratio the most
loaded scenario would incorporate data from about 50 000 devices.

The experiments are performed on a Linux server with 4 CPUs running at 2 GHz and 10 GB RAM with
a few other processes running in parallel. The CPU load and memory usage is monitored using the load
average function and the memory statistics stored in /proc/meminfo for CPU and memory load,
respectively. The load average function stores data about CPU usage for 1, 5 and 15 minute intervals
and the values are logged every second. The data in /proc/meminfo is logged every second and the
used memory is estimated as

MemUsed = MemTotal - (MemFree + Buffers + Cached + SwapCached)

A more detailed description of the type of data available in /proc/meminfo is available in [MEMINF].

4.3.4 Evaluation results

CPU loads for the three different scenarios are shown in Figure 59.

50 Messages

0.30
0.25
< 0.20
©
_0015
50
[
O 0.10
ey [P y—
005 “-H_‘—\_\_l‘-‘-
0.00
AN OO NN TN OOMNMNSN I N OOMNMMNSN dWn O M N O s
N ~NOAN S OO0 A < O HdMm WO MW O AN W IS
o A AT AN NN ANOOOONN TS NN NN
Time (s)
] NN e—5min 15 min

Page 94 of (104) © RERUM consortium members 2016



Deliverable D5.3 RERUM FP7-ICT-609094

500 Messages

0.6

CPU load

25
49
73

97
121
145
169
193
217
241

6
337
361
385
409
433
457
481
505
529
553
577

a ™M
o0
N ™

(

Time (s)

] min 5 min 15 min

5000 Messages

1.5

CPU load

1 101 201 301 401 501
Time (s)

—] Min 5 min 15 min

Figure 59: CPU load for the traffic application in the three different scenarios including 50, 500 and
5000 messages per 30 second interval.

Memory usage for each of the three different scenarios is shown in Figure 60.
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Figure 60: Memory usage for the traffic application in the three different scenarios including 50,
500 and 5000 messages per 30 second interval.
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From Figure 60 it can be seen that the CPU load increases clearly when the number of messages
increases and this could be a potential bottle neck of the system using the current implementation if
a vast amount of users would be included. However, the process that uses most of the CPU is the
database, which has some clear potential in performance improvement by tuning polling intervals of
the java application and the database structure. It could also be an alternative to use several threads
to enable better use of the four CPUs that are available on the machine.

In Figure 60 it can be seen that also the memory usage of the server increases when the number of
messages is increased. However, the memory usage does not increase as much as the CPU load and is
far from the capacity of the server even in the scenario with the largest number of messages.

4.4 Android app stability

44.1 Purpose of the experiment

The location data collection and transmission is the most resource consuming process of the
application and depending on the type of monitoring that the RD is used for the sampling frequency
could vary. The aim of these experiments is to evaluate how the stability of the application is affected
by the sampling period for location data transmission.

4.4.2 KPIs
The KPI of this experiment is the crash frequency of the RERUM traffic sensing application.

4.4.3 Experimental setup/scenarios

The standard sampling period of the app is 30 seconds and we have tested the app for two hours’
normal usage using a sampling period of 15, 7 and 3 seconds, respectively.

4.4.4 Evaluation results

The application did not crash in any of the tests for the different sampling intervals. When a sampling
period of 3 seconds is used, the app is collecting data ten times more frequent than we do in the Smart
Transportation trial. In the area of road traffic monitoring in a participatory sensing context, it is not
reasonable to collect data from participants more frequent than every three seconds and it seems like
in this range of sampling intervals the application is not affected by resource usage from the location
data collection and transmission process in such a way that it causes the application to freeze or crash.

4.5 SNR measurement precision

4.5.1 Purpose of the experiment

The aim of these experiments is to understand the potential of using signal strength-based positioning
and mobility detection for the RERUM traffic sensing application. Signal strength-based positioning
and mobility detection has the potential to improve battery efficiency of participatory sensing apps
considerably, and battery efficiency together with privacy are key components in the RERUM
participatory sensing framework.

4.5.2 KPIs

The KPI of this experiment is the precision of received signal strengths, as observed through the
Android signal strength API.

4.5.3 Experimental setup/scenarios

Data has been collected for seven different locations in the city of Norrkdping (Figure 61).
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Figure 61: Locations in the city of Norrkoping where the SNR data collection has been performed.

In the seven locations data has been collected using a dedicated Android app for three types of
networks: EDGE, HSPA and LTE.

4.5.4 Evaluation results

Example histograms for the different networks are shown in Figure 62. Similar patterns are identified
for all locations, where the LTE observations have a much wider spread. It is not clear from the
experiments whether this is caused by actual variation of signal strength, e.g. caused by power control,
or some error in mapping of signal strength protocol data to dB for LTE in the Android signal strength
API.
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Figure 62: Signal strength variation of stationary phones for different networks.

Except for LTE, the results are encouraging for the purpose of signal strength-based mobility detection.
Considering the results for EDGE and HSPA in Figure 62, it is not very likely that the signal strength will
change by more than 5 dB, unless a physical movement is involved. Comparing this with some expected
path loss as a function of distance we can get an idea of which level of movement that can be detected
using signal strength analysis. For most macroscopic propagation models for urban areas, a 5dB change
in received power would correspond to a few hundred meters’ physical displacement from the base
station, if the distance to the base station is not too far.

For the purpose of travel time estimation and path inference based on signal strength-based
positioning it is likely that we need to rely on more observations than the currently connected base
stations, i.e. observations also from neighbouring base stations, to achieve reasonable accuracy.
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5 Conclusions

This deliverable presented the results of the in-lab experimental work undertaken as part of Task 5.3
“Proof-of-Concept Laboratory Experiments”. Indeed, a large number of in-lab proof-of-concept
controlled experiments have been conducted to assess both qualitatively and quantitatively the
performance gains of the protocols and algorithms, as well as the individual system modules
developed in work packages WP2-WP4. In total, 18 experiments were conducted by the project in a
long period of continuous testing, assessment of the results, revising of the system modules and testing
again the modules to ensure an optimal performance. What is presented in this document is the final
version of the experimental results, with the latest version of each software module.

The experiments were split in three main categories: (i) security, (ii) networking and (iii) android
application. Almost all experiments were considering (among other metrics) tests for the energy
consumption and the performance of the software modules, to ensure that the modules will be able
to run flawlessly on constrained devices. As shown in the detailed results in the previous sections, in
almost all cases we succeeded to keep the energy consumption of the devices very low and the
memory and processing usage quite low. In some cases, we were not able to run the whole experiment
on the devices due to the very limited resources. For example, in the RSSI-based CS encryption, the
devices are not capable of running the whole process for key generation on them, so we had to develop
a different protocol to gather only the RSSI on devices and send them to a backbone server for key
generation.

The execution of the experiments was done in an internal environment and mostly under controlled
conditions. The goal was not to test the software modules in a real-world trial, but to have the
necessary step between simulations and trials. That is to implement the software modules on real
hardware and try to improve this implementation, by fixing the configuration, setting the correct
parameters or changing some parts of the code in order to ensure that the experimental results in the
controlled environment can be very close to simulation results. This was indeed verified every single
experiment, as it was presented in detail in the previous sections. This intermediate step is crucial in
order to ensure that an “optimized” version of the software modules will be used for the actual real-
world trials, where re-flashing the devices with new versions of software is not always feasible (or easy
to be done).

In general, the results of the many thorough experiments that were performed within the activities of
Task 5.3 are very positive, since all the developed software modules work very well in the controlled
laboratory environments. Furthermore, the developed hardware (the RE-Mote) was used in almost all
experiments and it performed excellently. Considering these, we can be almost certain that the
modules will have a comparable performance in the actual trials in both cities, which will contribute
to the successful execution of the overall system trials.
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