
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/283507151

Watching Windows: An Open Source approach using PowerShell

Conference Paper · September 2015

CITATIONS

0
READS

1,667

2 authors:

Some of the authors of this publication are also working on these related projects:

icABCD Conference 2019 View project

SUASecLab View project

Ralf C. Staudemeyer

University of Applied Sciences Schmalkalden

34 PUBLICATIONS 414 CITATIONS

SEE PROFILE

Karl Van der Schyff

Abertay University

23 PUBLICATIONS 161 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ralf C. Staudemeyer on 06 November 2015.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/283507151_Watching_Windows_An_Open_Source_approach_using_PowerShell?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/283507151_Watching_Windows_An_Open_Source_approach_using_PowerShell?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/icABCD-Conference-2019?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/SUASecLab?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Staudemeyer?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Staudemeyer?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Applied_Sciences_Schmalkalden?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Staudemeyer?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Karl-Schyff?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Karl-Schyff?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Abertay_University?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Karl-Schyff?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Staudemeyer?enrichId=rgreq-bbb5737870ca4cf46600721f4f43a50a-XXX&enrichSource=Y292ZXJQYWdlOzI4MzUwNzE1MTtBUzoyOTI2NzUwNTI5NDk1MTJAMTQ0Njc5MDU3ODk4Nw%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Watching Windows: An Open Source approach
using PowerShell

Karl van der Schyff
Department of Computer Science

Rhodes University

Grahamstown, South Africa

e-mail: k.vanderschyff@ru.ac.za

Ralf C. Staudemeyer
School of Computing

University of South Africa

Johannesburg, South Africa

e-mail: staudrc@unisa.ac.za

Abstract—Monitoring servers running Microsoft Windows can
be a costly exercise, mainly related to software recommended
by vendors. Academic environments with financial constrains
have thus to either cease their monitoring endeavours or look
towards open source solutions. In this paper we demonstrate
how to monitor aspects of a Windows server in a simple and
flexible way using open source tools. To accomplish this we make
use of the script language PowerShell and the Nagios Remote
Plugin Executor (NRPE) to gather information on a scheduled
task within Windows Server 2012 R2.

This paper addresses a knowledge gap that inhibits open
source monitoring of Windows servers. Currently there is a wide
range of plugins and scripts available at online repositories, but
these do not always address specific aspects of Windows servers.
Frequently those plugins deemed suitable are only available in
binary form or written in a scripting language not pre-installed
on a Windows server. This complicates information gathering.
The suggested approach mitigates this by providing an example
script, which can easily be customised to monitor almost any
scheduled task12.

Index Terms—Network monitoring, Windows environment,
PowerShell, NRPE, SNMP, WMI, Icinga, Nagios.

I. INTRODUCTION

Infrastructure monitoring is an integral part of system ad-

ministration [1]. It provides mechanisms to monitor computer

networks or system components for failures and anomalies. In

such an event the system can notify the person responsible

for the concerned devices. Unfortunately monitoring is often

neglected due to insufficient funds to purchase vendor recom-

mended turnkey solutions.

Administrators can however make use of a number of open

source monitoring platforms [1], [2]. For the most part these

platforms are derivatives of the well-known Nagios3 infrastruc-

ture monitoring system, with most of the differences related to

user interaction [1]. In this paper we make use of the Icinga4

monitoring system, which is compatible with Nagios. In terms

of configuration this is also true for the wide range of plugins

and scripts available at repositories such as Monitoring Plugins
5, Monitoring Exchange 6 and NSClient++ 7. In this paper

1Neither the entire paper nor any part of its content has been published or
has been accepted for publication elsewhere.

2It has not been submitted to any other journal.
3www.nagios.org
4www.icinga.org
5www.monitoring-plugins.org
6www.monitoringexchange.org
7www.nsclient.org

we demonstrate how to monitor Microsoft Windows Server

backups by using the Nagios Remote Plugin Executor (NRPE)

and client-side scripts written in PowerShell.

Our approach is relevant since there are very few academic

publications addressing the challenge of monitoring Windows

systems. Currently, Windows administrators can monitor their

network infrastructures with the built-in Windows Performance

Monitor [3], which makes use of internal performance counters

[4]. However, this approach requires detailed custom configu-

ration, due to the large number of system-specific counters.

Furthermore, after locating a relevant counter it has to be

queried either with the performance console using the perfmon

tool, or remotely with Windows Management Instrumentation

(WMI) [5]; the latter an alternative to the Simple Network

Management Protocol (SNMP)[6]. In addition to the aforemen-

tioned technologies administrators may also use costly third-

party tools.

Open source approaches are not only cost effective, well

documented and extensible, but also supported by a large

developer and user community. Thus, monitoring Windows

servers using an open source approach is relevant and addresses

aspects of a persistent problem.

The paper is structured as follows: At first the reader is

presented with a literature review and discussion on the general

use of Icinga. This is followed by a more focused discussion

on documented interfaces suitable to monitor a Microsoft

Windows server. The configuration of the test environment

is followed by a discussion of the example script which is

then used to monitor server backups. This script is intended

as a template for monitoring other scheduled tasks and can

be easily adapted to specific needs. The paper concludes by

briefly highlighting areas of future research.

II. LITERATURE REVIEW ON INFRASTRUCTURE

MONITORING

According to [2] there are two primary types of monitoring

– real-time monitoring, which is used to gather information

on the current state of network infrastructure and services,

and historical monitoring, which is used to view performance

data. For example, real-time monitoring is especially useful

to pro-actively monitor mission-critical systems. A case in

point is the monitoring of radiological information systems

as discussed in [7]. Such real-time monitoring aids to the

Page 189 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2015

gathering of valuable statistical information. From the afore-

mentioned example, it is clear that monitoring computing

infrastructures has its advantages. In fact, [8] deem it to be

essential when administering infrastructures with a number of

networked systems and services.

It is also not uncommon for organizations to monitor their

network infrastructure. For example, [9] describe how Nagios

is used to monitor the Enabling Grid for E-sciencE (EGEE).

Another example is provided by [2] where the author describes

how Nagios is used to monitor specific library services. Even

supercomputing clusters are monitored, with [10] describing

the migration from Nagios to Icinga within the Compact Muon

Solenoid (CMS) experiment at the Large Hadron Collider

(LHC).

Some authors have also reported success in monitoring the

performance of Windows clusters. In an article by [11] the

authors discuss a tool called WatchTower, which they use

to simplify the collection of Windows performance data by

providing easy access to raw performance counters.

Over and above the use of Nagios and Icinga many other

monitoring platforms, tools and extensions exist like Cacti8,

WhatsUpGold9, or check_mk10. Similar tools are discussed in

[12], where the authors describe a wide range of local and

distributed UNIX and Linux monitoring tools.

In contrast with UNIX and Linux, the monitoring of Win-

dows systems is often done with either Microsoft System

Center [13], Windows Performance Monitor [3] or other com-

mercial monitoring solutions like SolarWinds11. In the case of

System Center a proprietary client needs to be installed on

each machine. This makes such a solution only viable in a

Windows-only environment.

On the other hand, an open source approach circumvents

these limitations. Such approaches are not only cost effective,

but also are flexible in terms of the operating systems and

network services which can be monitored. As such, an open

source approach has much to offer, but is not without its own

limitations. One such limitation is the steep learning curve

and profound technical knowledge required. Much of what

is automatically setup by commercial solutions is controlled

via plain text configuration files. Administrators may also

be required to write custom plugins. Additionally, unless the

monitoring traffic is routed out-of-band, it is often required

that the monitoring system’s security be reduced. This in turn

increases the attack surface.

In the following section we briefly discuss related monitor-

ing technologies and protocols.

A. Simple Network Management Protocol (SNMP)

The Simple Network Management Protocol (SNMP) [6],

[14], [15] describes a generic process to manage the release of

data. It was designed to minimize the number and complexity

of monitoring agents. It is specified to be extensible and

platform independent. This makes SNMP a widely accepted

mechanism to monitor a diverse set of hosts and services. Most

8www.cacti.net
9www.whatsupgold.com
10mathias-kettner.de/check_mk.html
11www.solarwinds.com

operating systems and network devices are compatible with

SNMP, or can be extended accordingly.

To gather information, SNMP queries Object IDentifiers

OIDs, which define the information contained within a Man-

agement Information Base (MIB) [16], [17]. To extend the

capabilities provided by the standard MIBs, vendors often

define custom ones. These are then documented and distributed

with the corresponding network device. In general SNMP

monitoring information gets pulled from the network device,

but can also be pushed from a device. This is referred to as a

trap. These information flows take place on UDP-port 161 and

162 respectively.

A distinction is made between SNMP Versions 1, 2c, and

3. Version 2c introduces a larger domain in comparison to

Version 1, which is essential when accessing counters in recent

devices[14]. SNMPv3 extends the options of 2c improving user

management. In particular SNMPv3 introduces encryption of

authentication information and transport data [15].

However, within a Windows environment the use of SNMP

is limited in that it only supports SNMPv1 and v2c. More-

over, support for SNMP on Windows Server 2012 has been

deprecated [18].

B. Windows Management Instrumentation (WMI)

Windows Management Instrumentation (WMI) [5], [19] was

introduced in Windows 2000. It is Microsoft’s implementation

of the Common Information Model (CIM) [20], which is part

of the Web-Based Enterprise Management (WBEM) internet

standards suite [21]. As with SNMP, WMI provides remote

read and write access to local resources. This includes extended

event notification and command execution via a scriptable

application programming interface (API) [22]. Amongst other

languages this API supports PowerShell, VBScript and Perl.

Figure 1. Architecture of the Windows Management Instrumentation (WMI)

Figure 1 shows how WMI integrates with other key Windows

components. There are four main components that constitute

the core architecture: management applications, the WMI core

service, the CIM repository, and WMI providers. The providers

handle objects that provide access to different parts of the

operating system. To query these providers the WMI core ser-

vice provides an API for management applications and scripts.

This includes scripts, .NET classes (system.management.class)

and the Windows Management Instrumentation Command-line

(WMIC) tool.

Page 190Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2015

Similar to SNMP MIB, WMI makes use of a CIM repository

providing hierarchically structured namespaces. Several prede-

fined namespaces exist, with each namespace being mapped

to the objects handled by their providers. These objects can

relate to actions, hard- or software, and events, but also to

further instances.

However, WMI is a technology used solely by Windows and

it has its limitations [19]. These include the inability to find the

same objects on different systems and the limited availability

of providers.

III. THE ICINGA MONITORING PLATFORM

Icinga is a monitoring platform that builds on the foun-

dations laid down by Nagios. Improvements include a user-

friendly web interface, an open and transparent development

architecture as well as support from a large online community

who share their experiences and knowledge [10].

Although Icinga and Nagios both have a steep learning

curve [2], their implementation reduces reactive infrastructure

management and promotes a more proactive approach. Such

an approach makes use of a typical Icinga installation, which

consists of a hierarchical structure of plain text configuration

files [23].

For the most part these configuration files contain detailed

information on the monitored devices and services: Host defi-

nitions include details such as the hostname, IP address, check

periods and check commands of the monitored device. Service

definitions typically reference the monitored host and contain

more details about the executed commands. Furthermore com-

mand definitions are linked to plugins and define the command

line to be executed by the plugin.

Icinga uses plugins in order to check defined hosts and

services. These are either executed locally or remotely. Local

checks primarily monitor local system parameters such as

CPU load and memory usage. Remote checks monitor network

services. For more information on the configuration of Icinga

see [24].

Alternatively administrators could run checks locally on

remote hosts by making use of SNMP [6], SSH [25] or NRPE

[26]. All these technologies require a daemon running on the

target system. The daemon executes the local check on the host

and returns the output to the monitoring system. Some well-

known default plugins to facilitate remote execution include

check_snmp, check_by_ssh, and check_nrpe.

NRPE, although not designed for security like SSH and

SNMPv3, is favoured mainly because of its low overhead and

the availability of a proven NRPE agent for Windows (such

as NSClient++12). Here the two required components are the

NRPE Daemon running on the remote host and the check_nrpe
plugin residing on the monitoring server itself.

Icinga also provides a plugin-API for users who wish to

develop their own plugins, which is documented in the plugin

development guidelines [27]. These guidelines describe how

custom written plugins should behave in terms of input and

output. In short, every plugin on an Icinga server has to fulfil

two requirements in order to be recognized as a plugin. Firstly,

12www.nsclient.org

Table I
ICINGA PLUGIN-API RETURN VALUES AND STATES

Return Value Service State Host State

0 OK UP
1 WARNING DOWN
2 CRITICAL UNREACHABLE
3 UNKNOWN n/a

it should exit with one of four possible return values and

secondly it should return a single line of text to STDOUT. Each

of these return values is matched to a corresponding service or

host state, as outlined in Table I.

Optionally plugins may also return multiple lines of text as

well as performance data. For example to return performance

data a plugin needs to separate the actual performance values

from the returned text by using a pipe symbol, as follows:
icinga@moni:~$./check_disk -w 10% -c 5% -p /
DISK OK - free space: / 4981 MB (68% inode=88%);|

/=2311MB;6914;7298;0;7683

In addition to this separation, there is also a standard format

to which the returned data has to conform. This entails speci-

fying the levels for warning (6914), critical (7298), minimum

(0), and maximum (7683). The returned data also includes the

used space (2311MB) and a label. Here the label refers to the

root directory (/).

Once a plugin has executed, one of these values, together

with its corresponding textual description (and optional perfor-

mance data), is returned to the Icinga server. For example, if the

disk usage in the above example takes on a value between the

thresholds set for warning and critical, the plugin will return

a value of 1. Icinga will then flag this service as being in a

WARNING state, as outlined in Table I. This warning state is

then displayed on the user interface. The following section will

provide a more detailed look at how remote plugins (and their

corresponding handlers or scripts) are executed.

A. Nagios Remote Plugin Executor (NRPE)

To monitor a Windows system via NRPE [26] a monitoring

agent is required. Such an agent facilitates communication

between the monitoring server and the Windows host. In

this paper, the well known NRPE agent provided by the

NSClient++ monitoring daemon was used. However, the de-

fault configuration of NSClient++ had to be adjusted to support

the execution of external scripts. The process of executing

external scripts is illustrated in Figure 2.

Figure 2 further illustrates that NSClient++ is a modular

daemon; for this reason only exposes those functions for

which the core has loaded modules. In our case the mod-

ules NRPEServer and CheckExternalScripts are loaded. It is

specifically the CheckExternalScripts module, that provides

the ability to run scripts. In Version 0.4.1 of NSClient++, the

scripting languages Visual Basic, Python, Perl, and PowerShell

are supported, with PowerShell being the only language that

is pre-installed on Windows servers. The exact configuration

requirements to utilize PowerShell scripts are discussed in the

following section.

Page 191 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2015

Figure 2. Execution of external scripts with NSClient++ [28]

B. PowerShell

Windows XP introduced PowerShell to address the short-

comings of the command prompt inherited from MSDOS.

PowerShell addresses these shortcomings by allowing admin-

istrators to make use of .NET libraries [29]. This enables it

to integrate well with other Windows technologies [30], [31],

such as WMI [5], [32].

To access .NET libraries and WMI providers Powershell

executes specific lightweight commands, called cmd-lets. Each

cmd-let addresses a component of the operating system and in

most cases also requires a number of arguments. For example,

to query the local operating system for all the processes

currently running, one can execute the Get-Process cmd-let.

This will return a list of processes together with a set of

corresponding properties.

Using Powershell to leverage technologies like .NET and

WMI improves the manageability of Windows systems. This

is especially true when combined with NRPE. In the following

section we elaborate on how PowerShell can be used to extend

the monitoring capabilities of Icinga using NRPE.

IV. CONFIGURATION OF THE TEST ENVIRONMENT

This section contains the specifics of how PowerShell can be

used to monitor a scheduled task. In this example the success

of a scheduled Windows server backup is monitored.

A. Windows Server setup

We performed a default installation of Windows Server 2012

R2. As described earlier we prefer to monitor a Windows server

via a NRPE agent, which requires the NSClient++ daemon.

Version 0.4.1 (x64) of NSClient++ was installed onto the

Windows server. This installation proceeded as follows:

After accepting the license agreement, a typical installation

was selected and the default configuration settings were ac-

cepted. However, on the following screen the IP address of the

Icinga server was entered under Allowed Hosts. This permits

the monitoring server to remotely access the NRPE agent. Then

we enabled NRPE by selecting the corresponding check box.

A final Next finished the installation.

To facilitate the use of PowerShell, the configuration file of

NSClient++ was altered as follows: Firstly, the use of external

scripts had to be enabled by adding the following lines of text

to the nsclient.ini file. This file can be located in the installation

directory of NSClient++ (C:\Program Files\NSClient++):

[...]
; POWERSHELL WRAPPING -
ps1 = cmd /c echo scripts\\%SCRIPT% %ARGS%; exit

($lastexitcode) | powershell.exe -command -
[...]

Without this change the check_nrpe plugin will fail to run the

external PowerShell script. The second configuration change

was to add the actual command to run the external script. This

required adding the following lines of text to the nsclient.ini
configuration file:
[...]
[/settings/external scripts/scripts]
check_backups = cmd /c echo scripts\check_backups.ps1;

exit $LastExitCode | powershell.exe -command -
[...]

Finally, the check_backups.ps1 script was copied to the

scripts directory (C:\Program Files\NSClient++\scripts) of the

NSClient++ installation. The last configuration change ensured

that the User Account Control security feature of Windows

Server did not impede the execution process. To ensure this, it

was set to never notify. This setting can be verified by opening

the Control Panel, selecting the option User Accounts and

clicking on the Change User Account Control settings.

B. PowerShell configuration

To enable the execution of local scripts we needed to make

security modifications to the PowerShell environment. This

was achieved by executing the following command from an

administrative PowerShell command prompt:
Set-ExecutionPolicy -ExecutionPolicy remotesigned

This effectively allows local scripts to be executed, but

blocks the execution of remote scripts unless they have been

signed by a trusted certificate authority. In this example the

script is actually executed locally by NSClient++, so there is

no need to sign it.

C. Icinga configuration

All tests were performed on a default installation of Icinga

v1.9.3 on Ubuntu 12.04 LTS Server. To monitor the Windows

server a host configuration file was created containing the

following details:
define host
{
use template-host-windows
host_name backup-server01
alias Backup Server
address HOSTADDRESS
}

To monitor the scheduled backups of this host a service

definition file was created containing the following:
define service
{
use template-service-windows
service_description Backup status nrpe
check_command check_nrpe!check_backups
host backup-server01
}

The corresponding command description is as follows:
define command
{
command_name check_nrpe
command_line $USER1$/check_nrpe -H $HOSTADDRESS$

-t 60 -p 5666 -c $ARG1$
}

Note that the argument check_backups in the service def-

inition is passed to the command definition. There it is exe-

cuted by the check_nrpe plugin. For more information on the

Page 192Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2015

specifics relating to command definitions the reader is referred

to the Icinga documentation [24].

V. EXAMPLE OF A POWERSHELL SCRIPT

In this section we provide a brief discussion of a PowerShell

script template, as presented in Figure 3. In this example the

script caters for monitoring a scheduled backup task. Such a

task can be configured through the graphical Windows Server

Backup interface.

Figure 3. Powershell backup script

The first lines of code ensure that the script runs with

administrator privileges. Then lines 9 to 11 declare the return

values Icinga expects (see Figure 3), which are the service

states 0 (OK), 2 (CRITICAL), and 3 (UNKNOWN). For

simplicity’s sake this script will never return the value 1

(WARNING), but can be easily adjusted accordingly.

Lines 13 to 23 are part of the error handling structure: In line

15 a new object of the Schedule.Service class is instantiated.

This is followed by line 16 which establishes a connection

to the local host. To locate the correct task the script has to

enumerate all the scheduled tasks within the folder specified

in line 17. This object is then used to retrieve the status of a

specific task by using its name.

For scheduled tasks a return value of 0 indicates that the

scheduled task ran successfully. To ensure that the backup task

has been executed within the last 24 hours, line 20 ascertains

how much time has passed since the last backup. If an error

occurred during the execution of line 13 to 21, the $results
variable is set to the value 3 in line 24.

The Finally clause (line 26 to 46) sets the service state and

a corresponding line of text. The clause first checks if an error

occurred during the execution of the script. If this is the case

($results=3) the constant $returnUnknown is returned to Icinga.

Icinga then flags the service state as UNKNOWN.

If no errors were encountered lines 28 to 32 are skipped.

The Else statement is executed next to ascertain whether the

backup was successful. In this instance there are two conditions

which equate to a failed backup. The statement tests whether

the scheduled task exited with a value not equal to 0 or if

the backup is older than 24 hours. If either one of these

conditions are true, the backup is deemed a failure and the

constant $returnCrit is returned. Icinga then flags the service

state as CRITICAL. However, if these conditions are false a

valid backup has taken place in the last 24 hours and the script

returns the constant $returnOK. Icinga then flags the service

as OK.

We would like to point out that with a few changes this script

can check any scheduled task. This can be accomplished by

changing the location (line 17) and name of the scheduled task

(line 18). Additionally, this script can be expanded to accept

parameters allowing it to check multiple scheduled tasks.

VI. CONCLUSION

In this paper we addressed the challenge of monitoring

Windows servers. To achieve this the open source tool Icinga

and the NRPE-agent (provided by NSClient++) were used

to monitor a scheduled task by using PowerShell. First we

provided a brief introduction to infrastructure monitoring and

the Nagios-derived monitoring platforms. The reader was then

presented with background information on the limited number

of monitoring technologies available for Windows platforms.

This was followed by a discussion on the configuration changes

required to enable NRPE and PowerShell to monitor a Win-

dows server. A discussion on the mechanics of the PowerShell

script followed, providing the reader with the required back-

ground information to understand how it operates.

The development of scripts and plugins to extend the capa-

bilities of monitoring systems is an ever growing area. This

is especially true for Windows systems. For this reason it is

pertinent that further research and development take place in

this field.

One such area is the lack of literature on monitoring Win-

dows systems using open source tools. There is a requirement

to provide researchers with a taxonomy of such technologies.

This would not only provide researchers with an overall under-

standing of Windows monitoring, but also point out knowledge

gaps. These could then be addressed using approaches similar

to what was demonstrated in this paper.

Besides just monitoring hosts, further research could be

directed towards methods of self-healing. Especially within

Windows environments. For example, it is common to apply

a number of Windows updates on a regular basis. Instead of

just reporting on these outstanding updates, scripts could be

developed to automatically trigger their installation on certain

conditions. This would be especially useful in large production

environments. The same applies to automatically adjusting

Windows firewalls, intrusion detection and log analysis.

Page 193 Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2015

VII. ACKNOWLEDGMENTS

This research was partially funded by the fellowship pro-

grams of Rhodes University (2013) and the University of South

Africa (2014).

REFERENCES

[1] J. Reams, “Extensible monitoring with Nagios and messaging middle-
ware,” in Proceedings of the 26th international conference on Large
Installation System Administration (LISA’ 12). USENIX Association,
2012, pp. 153–162.

[2] T. M. M. Silver, “Monitoring network and service availability with open-
source software,” Information Technology and Libraries, vol. 29, no.
March, pp. 8–22, 2013.

[3] Microsoft, “Windows Performance Monitor,” 2014. [Online]. Available:
http://technet.microsoft.com/en-us/library/cc749249.aspx

[4] ——, “Performance Counters,” 2014. [On-
line]. Available: http://msdn.microsoft.com/en-
us/library/windows/desktop/aa373083(v=vs.85).aspx

[5] ——, “Windows Management Instrumentation,” 2014. [Online]. Avail-
able: http://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx

[6] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple Network
Management Protocol (SNMP),” RFC 1157, pp. 1–36, 1990. [Online].
Available: http://www.ietf.org/rfc/rfc1157.txt

[7] C. Toland, C. Meenan, M. Warnock, and P. Nagy, “Proactively moni-
toring departmental clinical IT systems with an open source availability
system.” Journal of Digital Imaging, vol. 20 Suppl 1, no. September, pp.
119–24, Nov. 2007.

[8] M. Matýsek, M. Adámek, M. Kubalčík, and M. Mihok, “Monitoring of
Computer Networks and Applications using Nagios,” Advances in Data
Networks, Communications, Computers and Materials Monitoring, pp.
63–67, 2012.

[9] E. Imamagic and D. Dobrenic, “Grid infrastructure monitoring system
based on Nagios,” in Proceedings of the 2007 workshop on Grid
monitoring (GMW ’07). New York, New York, USA: ACM Press,
2007, pp. 23–28.

[10] G. Bauer, U. Behrens, O. Bouffet, M. Bowen, J. Branson, S. Bukowiec,
M. Cigane, S. Cittolin, J. a. Coarasa Perez, C. Deldicque, M. Dobson,
A. Dupont, S. Erhan, A. Flossdorf, D. Gigi, F. Glege, R. Gomez-Reino,
C. Hartl, J. Hegeman, A. Holzner, Y. L, L. Masetti, F. Meijers, E. Meschi,
R. K, V. O’Dell, L. Orsini, C. Paus, A. Petrucci, M. Pieri, G. Polese,
A. Racz, O. Raginel, H. Sakulin, M. Sani, C. Schwick, D. Shpakov,
M. Simon, A. C, and K. Sumorok, “Health and performance monitoring
of the online computer cluster of CMS,” Journal of Physics: Conference
Series, vol. 396, no. 4, p. 7, Dec. 2012.

[11] M. W. Knop, P. A. Dinda, and J. M. Schopf, “Windows Performance
Monitoring and Data Reduction Using WatchTower,” in Proceedings of
the 11th IEEE Symposium on High-Performance Distributed Computing.
Citeseer, 2002, p. 14.

[12] Z. Škiljan and B. Radić, “Monitoring systems: Concepts and tools,” in
Proceedings of the 6th CARNet Users Conference, 2004.

[13] Microsoft, “Microsoft System Center 2012 R2 Evaluation
Resources,” 2014. [Online]. Available: http://technet.microsoft.com/en-
US/evalcenter/dn205296.aspx?wt.mc_id=TEC_149_1_27

[14] W. Stallings, “SNMP and SNMPv2: The infrastructure for network
management,” Communications Magazine, IEEE, no. March, pp. 37–43,
1998.

[15] ——, “SNMPv3: A security enhancement for SNMP,” IEEE Communi-
cations Surveys & Tutorials, vol. 1, no. 1, pp. 2–17, 1998.

[16] K. McCloghrie and F. Kastenholz, “The Interfaces Group
MIB,” RFC 2863, p. 69, 2000. [Online]. Available:
https://www.ietf.org/rfc/rfc2863.txt

[17] D. Perkins, “Understanding SNMP MIBs – Revision 1.1.7,” in Proceed-
ings of the Nineteenth Internet Engineering Task Force, 1993, p. 44.

[18] Microsoft, “Features Removed or Deprecated in Windows Server
2012,” 2014. [Online]. Available: http://technet.microsoft.com/en-
us/library/hh831568.aspx

[19] ——, “WMI .NET,” 2014. [Online]. Available:
http://msdn.microsoft.com/en-us/library/ms257340%28v=vs.80%29.aspx

[20] Desktop Management Task Force, “Common Information Model (CIM)
Infrastructure Specification Version 2.7.0,” Desktop Management Task
Force, Inc., Tech. Rep., 2012.

[21] ——, “Web-Based Enterprise Management (WBEM),” 2014. [Online].
Available: http://www.dmtf.org/standards/wbem

[22] Microsoft, “Windows Management Instrumentation and the
Common Information Model,” 1998. [Online]. Available:
http://msdn.microsoft.com/en-us/library/ms811552.aspx

[23] M. A. Pervilä, “Using Nagios to monitor faults in a self-healing envi-
ronment,” in Seminar on Self-Healing Systems, 2007, pp. 1–6.

[24] Icinga Development Team and E. Galstad, “Icinga Documentation –
Version 1.11,” 2014. [Online]. Available: http://docs.icinga.org/latest/en/

[25] T. Ylonen and C. Lonvick, “The Secure Shell (SSH)
Protocol Architecture,” RFC 4251, 2006. [Online]. Available:
https://www.ietf.org/rfc/rfc4251.txt

[26] E. Galstad, “NRPE Documentation,” Nagios, Tech. Rep., 2007.
[27] Icinga, “Icinga Plugin API,” 2014. [Online]. Available:

http://docs.icinga.org/latest/en/pluginapi.html
[28] M. Medin, “NSClient++ external scripts howto,” 2014. [Online].

Available: http://docs.nsclient.org/howto/external_scripts.html
[29] S. Talaat, Windows PowerShell 4.0 for NET Developers. Packt Publish-

ing Ltd, 2014.
[30] J. Andersson, Microsoft Exchange Server 2013 PowerShell Cookbook.

Packt Publishing Ltd, 2013.
[31] T. Kopczynski, P. Handley, and M. Shaw, Windows PowerShell Un-

leashed. Pearson Education, 2008.
[32] R. Siddaway, PowerShell and WMI. Manning, 2012.

Karl van der Schyff (b. 1979) received his undergraduate degree in 2004
from the University of South Africa. His research interests include information
security, network monitoring and large-scale operating system deployment.

Ralf C. Staudemeyer (b. 1973) has a doctorate in computer science
and more than 20 years of international experience in research, teaching and
application. His areas of expertise include the planning, administration, protec-
tion and monitoring of modern networks. He is author of the "Nagios/Icinga
Cookbuch". Currently, he is a globetrotter and scientist.

Page 194Southern Africa Telecommunication Networks and Applications Conference (SATNAC) 2015

View publication stats

https://www.researchgate.net/publication/283507151

