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Abstract—Selecting a minimum set of core features for au- the promise of providing a solution that can detect possible

tomatic network intrusion detection with a variety of machine  attacks in real-time so that countermeasures may be taken in
learning algorithms is a challenging problem. In this paper we a timely manner

propose a minimum feature set which can be easily extracted . . . L
from network traffic. We compare decision trees, neural net- 1h€ purpose of this work was to investigate the application

works, naive Bayes and Bayesian networks classifiers performing Of standard machine learning methods to network intrusion
on the KDDCup99 datasets. We show that by feature selection detection; in particular, we were interested in the effaits
and preprocessing a comparable classification performance is g reduced feature set on the network intrusion detection per
:ﬁ:nh;evable for the benefit of a significant reduction of training ¢, . ance. We applied decision trees, naive Bayesian legyni
' Bayesian networks and the neural network backpropagaltion a
Index Terms—network intrusion detection, feature selection, gorithm to the publicly available DARPA/KDDCup99 dataset.
\f;grtll(’f ;Zﬁ/lécgggésr?%gyg; ;ﬁarﬁgmhf’(; rssc's'on trees, neural net- 1 oo nsists of connection records with 41 features whose
relevance for intrusion detection are not clear. We repwit e
periments with different subsets of these features; iriqaar,
we present a subset of 11 features whose performance with
Huge amounts of data are being transmitted via computére standard machine learning algorithms is comparableeto t
networks nowadays; any attempts to perform real-time ¢raffperformance with the full feature set. The majority of stdelc
analysis on continuous streams of data necessitates a wisatures are basic features which are easily extracted &rom
selection of information to be extracted. Traffic analysis f network stream.
the purpose of network intrusion detection is no exception.
Communication sessions between hosts can be characterized
by so-called connection records. Every connection record ¢
tains a number of features uniquely identifying the conibect ~ An excellent introduction into various areas of Machine
Some features such as the duration of the connection, bylegarning is provided by Mitchell (1997) [1]. Basic concepfs
transferred in each direction or the TCP/UDP ports used fddachine Learning and their application to the field of networ
communication can be easily extracted. Other more compléxtrusion detection are summarized in Maloof (2006) [2] and
features which include information from application lager Vemuri (2006) [3].
which require packet inspection are more difficult to obhtain Machine Learning techniques have been applied to network
There has been an increasing diversity and sophisticatigmrusion detection for some time. Usually, the aim is the
of threats to modern IT systems; these threats call for noveltomatic generation of rules in order to classify netwark-c
security mechanisms capable of coping with sophisticatetbctions. Sinclair et al. (1999) [4] proposed the use of iene
attacks. Merely patching vulnerabilities in a system is nalgorithms and decision trees for the automatic generatfon
longer a viable solution. Intrusion detection systems agmi such rules. Peddabachigari et al. (2005) [5] investigatetl a
at identifying various kinds of malicious activities areush evaluated decision trees and support vector machines. The
becoming vital in order to safeguard networks against kstac results showed that decision trees perform slightly better
Classical signature-based approaches do not provide sufte dataset is small.
able solutions for the detection of novel attacks. Machine Kruegel et al. (2003) [6] proposed an event classification
learning methods offer alternative approaches which ale alscheme that is based on Bayesian networks. The scheme
to learn from monitored network data how to differentiatesignificantly reduces the number of false alarms in comparis
between normal and anomalous traffic. In particular, thdg hoto threshold-based systems.

I. INTRODUCTION

Il. RELATED WORK



Debar et al. (1992) [7] and Cannady (1998) [8] suggested Nodes in a decision represent some attribute of an instance
the use of neural networks as components of intrusion dand branches descending from a node correspond to possible
tection systems. Mukkamala et al. (2003) studied [9] thattribute values. Leaves represent possible values oftiyett
application of artificial neural networks and support vectovariable given the path starting from the root node and endin
machines in network intrusion detection; their resultsvgdw at the observed leave. To classify an item, the decision is
an ensemble of artificial neural networks and support vectéollowed from the root to a leaf. At every node, an attribute
machines to show superior detection performance comparisdtested and based on the outcome the corresponding branch
to single neural networks. Zhang et al. (2001) [10] apis followed. This procedure continues until a leaf is reatche
plied and compared perceptron, backpropagation, peareptr [1]
backpropagation-hybrid, fuzzy artmap, and radial-based-f
tion neural networks for statistical anomaly detection t®. Neural Networks
four different scenario data sets. Their results showed tha
backpropagation and perceptron-backpropagation-hyietd
outperformed the other methods. Bivens et al. (2002) [1
further illustrated that neural networks can efficientlyused
in network intrusion detection. The authors used clagsifyi
self-organizing maps for data clustering and multi-layer-p
ceptron neural networks for classification. They traineeirth
system to detect denial of service attacks, distributedatien
of service attacks, and portscans. Shah et al. (2004) [1

used grtificial- neurgl networl@ and fuzzy inf_erencg SySten?ﬁzed in layers where each neuron computes a weighted sum
to design an intrusion detection system. Their hybrid $ySteof its inputs. Input neurons take signals from the environime

combining fuzzy logic with neural networks outperformedand output neurons present signals to the environment. Neu-
neural networks.

Th ired infrastructure t t q | rons which are not directly connected to the environment but
€ required Inirastructure to caplure, prepare and a8alyg o .,nnected to other neurons are called hidden neurons.
large quantities of network data is defined by Brodie e

: The most common neural network learning technique is
al. (2005) [13]. Sabhnani et gl. (2003) [14] evaluated .th?he error backpropagation algorithm. It uses gradient efg@sc
performanpe of a _comprehgnswe set of patltern recognmqg learn the weights in multilayer networks. It works in
and machine 'e'f’"”'”g algorlthms on a selection of attacks hall iterative steps starting backwards from the outpyia
the KDDCup99 intrusion deteqtlon dataset. Sung et al. (P00 owards the input layer. A requirement is that the activatio
extracted a reduced dataset with comparable performaoice frfunction of the neuron be differentiable. [1]
the 1998 DARPA/KDDCup99 datasets by deleting one feature
at a time. They applied neural networks and support vector . .
machines. C. Bayesian Learning

In [15] Kayacik et al. (2005) investigated the relevance of The naive Bayes is a simple probabilistic classifier. It
all features provided in the KDDCup99 intrusion detectiorassumes that the effect of a variable value on a given class is
dataset to substantiate the performance of machine learnimdependent of the values of other variables. This assempti
based detectors trained on KDDCup99 training data. is called class conditional independence.

Chebrolu et al. [16] identified important input features to The naive Bayesian classifier is based on Bayes’ theorem
build computationally efficient and effective intrusiontgle- which provides a way to calculate the posterior probability
tion systems. They investigated the performance of Bagyesiffom the prior probability.
networks and classification and regression trees and siegges The algorithm stores the prior class probabilities and the
a hybrid model. They concluded that the reduction to relevaposterior probability of each attribute assigned to thassl
dataset features can improve performance of machine tearniDuring the learning phase, it estimates these probalsifitam
algorithms. Chen et al. (2005) [17] presented a flexible aleurexamples by simply counting frequencies of occurrence. The
tree model for intrusion detection systems with a focus oprior probability is the portion of examples from each class
improving the intrusion detection performance by reducinghe posterior probability is the frequency that attributdues
the input features. Lee et al. (2006) [18] presented a novetcur in the given class.
feature selection method based on genetic optimizatioe. Th During an observation, the algorithm operates under the
performance of the proposed approach was contrasted tga@gsumption that attributes are conditionally independéné
the performance of the naive Bayesian classifier. The préigorithm uses Bayes’ theorem to calculate the posterior
posed approach was especially effective in detecting umkno probability of each class. It returns the class label wita th

Artificial Neural Networks are inspired by biological learn
ing systems and loosely model their basic functions. They
onsist of a densely interconnected group of simple neuron-
like threshold switching units. Each unit takes a number of
real-valued inputs and produces a single real-valued autpu
Based on the connectivity between the threshold units and
element parameters these networks can model a complex
%Hobal behavior.
In feed-forward neural networks, sets of neurons are orga-

attacks. highest probability as the decision.
Despite its simplicity and the assumptions made, this algo-
I1l. M ACHINE LEARNING BACKGROUND rithm can often outperform more sophisticated classificati
A. Decision Trees methods. The performance and applicability is comparable t

Decision Tree learning is one of the most common machin%ec's'on trees and neural networks. [1]
learning methods. Learned functions are usually repredent )
the form of a tree-like structure representing a set of deis D- Bayesian Networks
which can be translated into if-then rules. Depending on Bayesian networks are another statistical classifier. Eney
the algorithm used, the representation may be binary drawn as a directed acyclic graph where every node repsesent
multibranched. an attribute and the edges describe the relations between th



Every node contains a conditional probability table which The so-called ‘content-based’ higher-level features use d
defines the probability distribution. It is used to predicet main knowledge to look specifically for attacks in the actual
class probabilities for every given instance. The prolitglaf  data of the segments recorded in the tcpdump files. These
each feature value depends on the values of the attributesamfdress 'r2I' and 'u2r’ attacks which sometimes only reguir
the parent nodes. Nodes without parents have an uncordlitiom single connection or which are without any prominent

probability distribution. sequential patterns. Typical features include the numifer o
Learning of Bayesian networks is basically a search throudhiled login attempts or whether root access was obtained
the space of all possible networks. during the session (features 10-22 in table I).

The main advantage of Bayesian networks in comparison Furthermore, there are 'time-based’ and 'connection-tfase
to naive Bayes is that it is less constraining. They are easy derived features to address 'dos’ and 'probe’ attacks.etim
interpret for humans. The provided estimates can be rankdiised’ features examine connections within a time window
which allows the cost to be minimized. [1] [19] of two seconds and provide statistics about these. To peovid
statistical information about attacks extending a two sdso
time-window such as slow probing attacks 'connection-dase

V. THE DATA features use a connection-window of 100 connections. Both

The choice of training data available for machine learning iare further split into 'same host' features which provide
the field of network intrusion detection systems is verytadi statistics about connections with the same destinationarus
One of the few but at the same time most comprehensiveame service’ features that examine only connections thith
widely used datasets are the DARPA datasets. They are freegme service (features 23-41 in table I).
available from the Information Systems Technology Group The KDDCup99 competition provides the training and
(IST) of the MIT Lincoln Laboratory. testing datasets in a full and a so-called '10%’ subset @Brsi

The tcpdump data provided by 1998 DARPA Intrusionfhe '10%’ subset was created due to the huge amount of
Detection Evaluation network was further processed and usgonnection records present in the full set; some 'dos’ kstac
for the 1999 KDDCup contest at the fifth International Conferhave millions of records. For this reason, not all of these-co
ence on Knowledge Discovery and Data Mining. The learningection records were selected. Furthermore, only cororeti
task of this competition was to classify the preprocessedithin a time-window of five minutes before and after the
connection records to either normal traffic or one out of thentire duration of an attack were added into the 10% datasets
four given attack categories ('dos’, 'probe’, r2l’, 'udr To achieve approximately the same distribution of intrasio

The seven weeks of network traffic collected in four gi@nd normal traffic as the original DARPA dataset, a selected
gabytes of compressed raw tcpdump files from the DARPAEt of sequences with 'normal” connections were as well left
training data were preprocessed into five million labeled ann the 10% dataset.
categorized connection records with approximately 10@dyt The full training dataset contains 4.898.431 records and
each; and the two weeks of training data were processed iritte '10%’ subset contains 494.021 records. Both contain 22
two million unlabeled connections records. Preprocessing different attack types which are in the order they were used
the DARPA data for the 1999 KDDCup contest was done witBuring the 1998 DARPA experiments.
the MADAMID framework and is described in Lee (1999) The full testset with 2.984.154 records is only available
[20], Lee (2000) [21]. The KDDCup99 datasets are availablenlabeled; but a 311.029 record subset is provided both as
from the UCI KDD Archive as the 1999 KDDCup Datasetunlabeled and labeled test data. It is specified as the '10%
[22]. corrected’ subset with a different distribution and addtitl

A connection record summarizes the packets of a commurattacks not part of the training set.
cation session between a connection initiator with a sgetifi For the KDDCup99 competition the '10%’ subset was
source IP address and a destination IP address over a pajended for training. The '10% corrected’ subset contani
of TCP/UDP ports. The labeled connection records in thd7 different attacks can be used for performance testing.
training set are categorized normal or indicate one of 28dyp Out of 24 submitted entries the first three places of the
of attacks. As far as we know, the KDDCup99 dataset is tfiginal KDDCup99 challenge were using variants of dedisio
only publicly available dataset with fully labeled conrient trees. Elkan (2000) [23] summarizes the winning entries
records. Training and test sets have different probahilisy ~ results of the KDDCup99 challenge.
tributions.

Each connection record contains 41 input features grouped V. FEATURE SET REDUCTION
into basic features and higher-level features. The baataffes From the perspective of data mining, feature set reduction
are directly extracted or derived from the header inforomati aims to find the set of core features which best classifies
of IP packets and TCP/UDP segments in the tcpdump files tfe presented data. Some features may contain redundant
each session (basic features 1-9 in table ). This was done ipormation, while others may contain information suggest
using a modified version of the freely available 'Bro Intrsi  ing false correlations; both can hinder correct classificat
Detection System Each connection record was producedidditionally, unnecessary features add to computatior tim
when either the connection was terminated or Bro was closed.From the perspective of network intrusion detection sys-
The ’listfiles’ for tcpdump from the DARPA training data tems, there are strong reasons to reduce the number of
where used to label the connection records. collected features and choose features which can easily be

extracted out of a high-speed data stream. Especially when

IDARPA Intrusion Detection Evaluation. Information Systems i ; ; )
Technology Group (IST). MIT Lincoln Laboratory. web s aiming connections in today’s local area networks forward

http://www.ll.mit.edu/mission/communications/ist/corptideval/index.html " packets with tens of gitabit per second and millions of frame
2http://bro-ids.org/ per second.



TABLE |

KDDCUP99FEATURES
Nr features 1217 11
name category attr. type description Che04 | NEW
1 duration basic feature numeric duration of the connection in seconds X X
2 protocol type basic nominal connection protocol (tcp, udp, icmp) X X
3 service basic nominal destination port mapped to service X X X
4 flag basic nominal normal or error status flag of the connection
5 src_bytes basic numeric number of data bytes from source to destination| X X X
6 dst bytes basic numeric bytes from destination to source X X
7 land basic* nominal 1 if connection is from/to the same host/port; X
8 wrong_fragment basic* numeric number of wrong fragments (values 0,1,3) X X
9 urgent basic* numeric number of urgent packets
10 hot content feature*| numeric number of hot indicators
11 num failed_logins content numeric number of failed login attempts X
12 logged.in content nominal 1 if successfully logged in; 0 otherwise X X
13 num_compromised content numeric number of compromised conditions
14 root_shell content nominal 1 if root shell is obtained; 0 otherwise X
15 su_attempted content numeric 1 if su root command attempted; O otherwise
16 num_root content numeric number of root accesses
17 num file_creations content numeric number of file creation operations X
18 num_shells content numeric number of shell prompts
19 num_accessfiles content numeric number of operations on access control files
20 num_outboundcmds content numeric number of outbound commands in an ftp sessiorn
21 is_hot login content nominal 1 if the login belongs to the hot list
22 is_guestlogin content nominal 1 if the login is a guest login X
23 count time-based numeric number of connections to the same host as X X
the current connection in the past two seconds
24 srv_count time-based numeric number of connections to the same service as | X X
the current connection in the past two seconds
25 serror rate time-based numeric % of connections that have SYN errors X X X
26 Srv_serror rate time-based numeric % of connections that have SYN errors X
27 rerror_rate time-based numeric % of connections that have REJ errors
28 srv_rerror_rate time-based numeric % of connections that have REJ errors X
29 samesrv_rate time-based numeric % of connections to the same service
30 diff _srv_rate time-based numeric % of connections to different services X
31 srv_diff_host rate time-based numeric % of connections to different hosts X
32 dst host count host-based numeric | count of connections having the same destination host X
33 dst host srv_count host-based numeric count of connections having the same destination X X
host and using the same service
34 dst host same- host-based numeric % of connections having the same destination
srv_rate port and using the same service
35 dst host diff_- host-based numeric % of different services on the current host X X
srv_rate
36 dst_host same- host-based numeric % of connections to the current host X
src_port_rate having the same source port
37 dst host srv_- host-based numeric % of connections to the same service
diff_host rate coming from different hosts
38 dst_host serror rate host-based numeric % of connections to the current host
that have an SO error
39 dst_host srv_- host-based numeric % of connections to the current host and
serror rate specified service that have an SO error
40 dst_host rerror_rate host-based numeric % of connections to the current host X
that have an RST error
41 dst host srv_- host-based numeric % of connections to the current host and
rerror_rate specified service that have an RST error
42 connectiontype nominal X X X

* = feature provided by the 'Bro Intrusion Detection System’

For feature reduction we used a custom training set with VI. EXPERIMENTS
10.422 instances. This new dataset was sampled and raNpe used the weka data mining suite which provides a
domised from up-to the 1.000 first examples out of the 23 traférge number of different machine learning algoritAmBor
fic types contained in the full dataset. Afterwards we cfaexsi feature reduction we applied the C4.5 decision tree algorit

Fhe, tr,afﬁc,: to one out of flv_e types (‘normal’, ’dos’,. ’prf)be” in weka specified as J48), standard backpropagation with a
r2l’, 'u2r’). Feature selection was done by examination o

ultilayer feed-forward network (in weka MLP), naive Bayes

the J48 decision tree after every run reducing and/or adding 4 Bayesian networks to the DARPA/KDDCup99 training
individual and groups of features. Features close to theabo data using 10-fold cross-validation

the tree were considered more important than features cIoseWe did an extended series of experiments with the aim to

to I]?aveds.tF?atLtJres extracte d (cajasny. frc:(m n?t\(/jvork data wleéﬁtract a reduced features set with only few, if any, content
preterred fo features requiring gomain knowledge or " features. This resulted in our 11 features set described in
traffic data analysis. Classification and runtime perforoean section V

of naive Bayes, Bayesian nets and backpropagation neuralln our next step we investigated into optimizing preproeess

networks were also obser\(ed In every run. Thg resulting ]lflig the selected features to further increase performance.
selected features set consists out of seven basic featmdes a

four higher level features. They are described in table I. Shitp://www.cs.waikato.ac.nz/mliweka/ (09/05/08)



80000
probe attacks, but this comes with an improved false alarm

70000 — rate. Here the detection of network probes, r2l and u2r ledtac
both decrease. The false alarm rate for u2r attacks is reduce

The MLP neural network improves the false alarm rate on
the detection of dos attacks. The detection of probe attacks
improves with a decrease of the false alarm rate. Detecfion o
r2l attacks is decreased and of u2r attacks is increased.

We note that due to the few examples of u2r attacks the very
low false alarm rates are not very meaningful and difficult to
compare.

Processing time improved for all four classifiers. Outstand
ing is the reduction of processing time for the neural nekwor
which was reduced in total by 97.5%.

BayesNet nBayes MLP Tables Il shows the confusion matrix of the result with
W41 Wa41p W11 O1lp the highest accuracy of a classifier trained with the feature
Fig. 1. Comparison of the total number of incorrect classifiestances reduced and preprocessed 10% training set. The resultys ver

(false positives + false negatives) using the four datassants with the 41 Close to the winning entry of the KDDCup99 competition.
features, 41 features preprocessed, 11 features and ltefegireprocessed.
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40000

30000
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10000

TABLE Ill
CONFUSION MATRIX OF TRAINED NEURAL NETWORK

Like most neural network implementations Weka's MLP,

. i i predicted — 0 1 2 3 4 %correct
implementation of the neural network backpropagation al-actual | normal | probe | dos | u2r | r2l

gorithm requires floating point numbers as input, preferredo norgml 60350 323366 %go 3 g 99!212%
; ; 1 probe 794 1 5 1 75.28%
in the range[_—l, 1]. The_KDD_Cup99 dataset contains con SOS 6228 | 557 | 223008| o | o bhiydt
tinues/numeric and nominal/discrete features preprecess | 3 yor 61 0 1 8 0 11.43%
very different ways. 4 2l 15610 82 4 92 | 559 3.42%

We wrote our custom preprocessing scripts. Foremost we
reset all outlier values to estimated maximum thresholde&l  Experiments were performed on a Dual-Core AMD
individually specified for every processed feature. Maximu QOpteron@2.22GHz with 32GB memory and a 64bit
threshold values were set based on expert knowledge. NexNU/debian operating system.
we applied the natural logarithm to selected continuesifeat
with strongly biased distributions. Then we scaled the eslu
of continues features to the the rangel, 1] with a precision VIl. CONCLUSIONS
of 1076,

We encoded binary values &s1,1]. For discrete features Ve have applied machine learning algorithms including
with three or fewer distinct values, we used effects codfugy. decision trees, naive Bayes classifiers, Baysian nets amdine
features with a greater numbers of distinct values we sortdfgtWorks to the KDDCup99 dataset for network intrusion
the values using least-first-ranking and scaled the scduesa detection. Our results show that a large number of features
to the rangd—1, 1]. We removed features with non-changing®'® in fact redundant or at least unimportant for the majorit
values in the testset (e.g. nuoutbound cmds, is host login). of attacks. We were able to drastically reduce the number of

Finally we mapped all attacks to one of the five attack type§atures from initially 41 down to 11 core features. Further
(normal, dos, probe, r2l, u2r). more, we could significantly decrease the classificatiore tim

For a performance comparison with the results of the The naive Bayes classifier is not well suited for this leagnin
KDDCup99 competition, we did run experiments using théask. It shows poor performance for all traffic types. Bagesi
original "10% training set’ and the '10% test set’. The résul networks show strengths in the classification of network
are shown in table II. Figure 1 additionally shows the difProbes but suffer from high false alarm rates in general.
ferent number of misclassifications by the machine learning J48 decision trees and MLP neural networks show good
algorithms applied to all four variants of the '10% trainingP€rformance for this type of datasets. Decision trees show
set’ (41/11 features, original/preprocessed). strenghts in the detection of rare r2l and u2r attacks.

In terms of total accuracy we find that decision trees, The slight decrease in detection of dos attacks and network
Bayesian networks and neural networks are able to hold thgifobes does not hurt. Due to the large amout of connections
performance after preprocessing and reducing the featurgdtiated in series by these attacks a detection rate of 8% i
The correct categorization of normal traffic remains stdbte still acceptable.
them as well. The naive Bayes is the only classifier which The first six of the selected core features (1,2,3,5,6,8)
looses performance noticeably. are base features which can be easily extracted from net-

An investigation into the true positive rate and the falsavork traffic with very less overhead. The remaining features
positive rate per attack traffic class reveal more intemgsti (25,33,35,36,40) are time-based and host-based traffic fea
details: tures. We were able to dismiss all 'content-based’ features

For the J48 decision tree the detection of network probeghich are much more complex to extract.
decreases but the false alarm rate remains stable. Theidetec Further research might reveal that some of these remaining
of u2r attacks increases. traffic features are as well dismissable using machine ilegrn

Bayesian networks slightly decrease on the detection afgorithms which are able to extract time series infornratio



TABLE I
PERFORMANCE OF ORIGINAL10% TRAINING SET WITH CORRECTED TESTSET USING TRAFFIC TYPE CLASFICATION

normal dos probe r2l u2r
feat.set| classifier time* accuracy | TPR | FPR | TPR | FPR | TPR | FPR | TPR | FPR | TPR | FPR
41 J48 6m 92.5759% | 0.995| 0.089 | 0.973 | 0.003 | 0.747 | 0.002 | 0.058 0 0.086 0
11p J48 im 92.2618% | 0.995| 0.092 | 0.97 | 0.003 | 0.665 | 0.002 | 0.057 0 0.143 0
41 naiveBayes| 1m 78.1795% | 0.944 | 0.085 | 0.792 | 0.018 | 0.895 | 0.136 | 0.006 | 0.001 0.7 0.011
11p naiveBayes| 7s 77.3902% | 0.895 | 0.076 | 0.792 | 0.116 | 0.72 | 0.133 | 0.085 | 0.003 0.1 0.001
41 BayesNet | 6m 91.1892% | 0.99 | 0.084| 0.95 | 0.002 | 0.836 | 0.014 | 0.101 | 0.001 | 0.629 | 0.005
11p BayesNet 24s 91.3285% | 0.988 | 0.089 | 0.957 | 0.003 | 0.804 | 0.01 | 0.053 | 0.002 | 0.471 | 0.002
41 MLP 28h53m || 92.3657% | 0.984 | 0.09 | 0.973 | 0.011 | 0.725 | 0.001 | 0.056 0 0.086 0
11p MLP 43m 92.2908% | 0.994 | 0.091 | 0.971 | 0.004 | 0.753 | 0.003 | 0.034 0 0.114 0

* = performed on Dual-Core AMD Opteron@2.22GHz with 32GB memory
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