
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/261635371

Evaluating performance of long short-term memory recurrent neural

networks on intrusion detection data

Conference Paper · October 2013

DOI: 10.1145/2513456.2513490

CITATIONS

55
READS

4,899

2 authors:

Some of the authors of this publication are also working on these related projects:

SUASecLab View project

Ralf C. Staudemeyer

University of Applied Sciences Schmalkalden

34 PUBLICATIONS 414 CITATIONS

SEE PROFILE

Christian Omlin

University of South Africa

30 PUBLICATIONS 973 CITATIONS

SEE PROFILE

All content following this page was uploaded by Ralf C. Staudemeyer on 28 September 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/261635371_Evaluating_performance_of_long_short-term_memory_recurrent_neural_networks_on_intrusion_detection_data?enrichId=rgreq-605683386efb97039a43a0df1ff135d4-XXX&enrichSource=Y292ZXJQYWdlOzI2MTYzNTM3MTtBUzoxNDY0NDMwODgxNzUxMTRAMTQxMTkyNjE2MTc0OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/261635371_Evaluating_performance_of_long_short-term_memory_recurrent_neural_networks_on_intrusion_detection_data?enrichId=rgreq-605683386efb97039a43a0df1ff135d4-XXX&enrichSource=Y292ZXJQYWdlOzI2MTYzNTM3MTtBUzoxNDY0NDMwODgxNzUxMTRAMTQxMTkyNjE2MTc0OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/SUASecLab?enrichId=rgreq-605683386efb97039a43a0df1ff135d4-XXX&enrichSource=Y292ZXJQYWdlOzI2MTYzNTM3MTtBUzoxNDY0NDMwODgxNzUxMTRAMTQxMTkyNjE2MTc0OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-605683386efb97039a43a0df1ff135d4-XXX&enrichSource=Y292ZXJQYWdlOzI2MTYzNTM3MTtBUzoxNDY0NDMwODgxNzUxMTRAMTQxMTkyNjE2MTc0OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Staudemeyer?enrichId=rgreq-605683386efb97039a43a0df1ff135d4-XXX&enrichSource=Y292ZXJQYWdlOzI2MTYzNTM3MTtBUzoxNDY0NDMwODgxNzUxMTRAMTQxMTkyNjE2MTc0OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Staudemeyer?enrichId=rgreq-605683386efb97039a43a0df1ff135d4-XXX&enrichSource=Y292ZXJQYWdlOzI2MTYzNTM3MTtBUzoxNDY0NDMwODgxNzUxMTRAMTQxMTkyNjE2MTc0OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Applied_Sciences_Schmalkalden?enrichId=rgreq-605683386efb97039a43a0df1ff135d4-XXX&enrichSource=Y292ZXJQYWdlOzI2MTYzNTM3MTtBUzoxNDY0NDMwODgxNzUxMTRAMTQxMTkyNjE2MTc0OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Staudemeyer?enrichId=rgreq-605683386efb97039a43a0df1ff135d4-XXX&enrichSource=Y292ZXJQYWdlOzI2MTYzNTM3MTtBUzoxNDY0NDMwODgxNzUxMTRAMTQxMTkyNjE2MTc0OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christian-Omlin?enrichId=rgreq-605683386efb97039a43a0df1ff135d4-XXX&enrichSource=Y292ZXJQYWdlOzI2MTYzNTM3MTtBUzoxNDY0NDMwODgxNzUxMTRAMTQxMTkyNjE2MTc0OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christian-Omlin?enrichId=rgreq-605683386efb97039a43a0df1ff135d4-XXX&enrichSource=Y292ZXJQYWdlOzI2MTYzNTM3MTtBUzoxNDY0NDMwODgxNzUxMTRAMTQxMTkyNjE2MTc0OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-South-Africa?enrichId=rgreq-605683386efb97039a43a0df1ff135d4-XXX&enrichSource=Y292ZXJQYWdlOzI2MTYzNTM3MTtBUzoxNDY0NDMwODgxNzUxMTRAMTQxMTkyNjE2MTc0OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Christian-Omlin?enrichId=rgreq-605683386efb97039a43a0df1ff135d4-XXX&enrichSource=Y292ZXJQYWdlOzI2MTYzNTM3MTtBUzoxNDY0NDMwODgxNzUxMTRAMTQxMTkyNjE2MTc0OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ralf-Staudemeyer?enrichId=rgreq-605683386efb97039a43a0df1ff135d4-XXX&enrichSource=Y292ZXJQYWdlOzI2MTYzNTM3MTtBUzoxNDY0NDMwODgxNzUxMTRAMTQxMTkyNjE2MTc0OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Evaluating performance of long short-term memory
recurrent neural networks on intrusion detection data

Ralf C. Staudemeyer
Department of Computer Science

Rhodes University
Grahamstown, SOUTH AFRICA
r.staudemeyer@ru.ac.za

Christian W. Omlin
School of Computer Science

University of the Witwatersrand
Johannesburg, SOUTH AFRICA

christian.omlin@wits.ac.za

ABSTRACT

This paper evaluates the performance of long short-term
memory recurrent neural networks (LSTM-RNN) on clas-
sifying intrusion detection data. LSTM networks can learn
memory and can therefore model data as a time series.
LSTM is trained and tested on a processed version of
the KDDCup99 dataset. A variety of suitable perfor-
mance measures are discussed and applied. Our LSTM
network structure and parameters are experimentally ob-
tained within a series of experiments presented. Results
finally show that LSTM is able to learn all attack classes
hidden in the training data. Furthermore we learn that
the receiver operating characteristic (ROC) curve and the
corresponding area-under-the-curve (AUC) value are well
suited for selecting well performing networks.

Keywords

long short-term memory, recurrent neural networks, KD-
DCup99, intrusion detection systems, machine learning,
time series analysis, receiver operating characteristic.

1. INTRODUCTION
It is a challenge to build intrusion detection systems

based on artificial intelligence. The purpose of this work
is to apply the long short-term memory recurrent neu-
ral network (LSTM-RNN) classifier to intrusion detection
data. We focus on the evaluation of different performance
measures suitable to quickly filter well performing net-
works, when browsing through large numbers of potential
candidates.
After outlining LSTM we observe a number of suit-

able performance measures and compare them to ROC-
analysis. Then we run a number of experiments on a
pre-processed version of the KDDCup99 dataset, which
consists of connection records with 41 features. After find-
ing a suitable neural network parameters and structure,
we run a performance analysis. Confusion matrix, accu-
racy, ROC-curve and AUC-value are used as performance
measures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAICSIT ’13, October 07 - 09 2013, East London, South Africa
Copyright is held by the owner/author(s). Publication rights
licensed to ACM. ACM 978-1-4503-2112-9/13/10 $15.00.
http://dx.doi.org/10.1145/2513456.2513490.

2. RELATED WORK
Long Short-Time Memory Recurrent Neural Networks

(LSTM) developed by [7] and extended by [6] are a spe-
cial class of Recurrent Neural Networks (RNN) with ex-
tended memory learning capabilities. RNNs are dynamic
systems with an internal state at each time step of the
classification. This is due to circular connections between
higher- and lower-layer neurons and optional self-feedback
connections. These feedback connections enable RNNs to
propagate data from earlier events to current processing
steps. Thus, RNNs build a memory of time series events.
This type of neural network ranges from partly to fully

connected, and early RNNs were suggested by [8] and
[4]. They need to be trained differently to feed-forward
neural networks (FFNNs) for reflecting the recurrent con-
nections. The most common and well-documented learn-
ing algorithms for training RNNs in temporal, supervised
learning tasks are backpropagation through time (BPTT)
(see [25], [21] and [20]) and real-time recurrent learning
(RTRL) (see [26] and [20]).
An overview of common performance metrics for ma-

chine learning in intrusion detection is provided by [13].
A detailed introduction of ROC-analysis can be found in
[5].
The choice of the available labelled intrusion detection

data is very limited. The most comprehensive and well
documented dataset is the KDDCup99-dataset extracted
from the DARPA datasets (see [10] and [11]). The data
was processed as described by [9]. The shortcomings of
this dataset are well know and documented by [14], [12],
[23] and [24].
Various static machine learning algorithms have previ-

ously been evaluated on the KDDCup99 dataset. The
winning entries [3] of the challenge were all variants of
the C5 decision tree algorithm [19]. After the challenge a
comprehensive set of other algorithms was tested on the
data, mostly with comparable results (see [22], [16], [1]
and [17]).

3. LONG SHORT-TERM MEMORY
Here we outline Long Short-Term Memory (LSTM) re-

current neural networks (see [7] and [6]), a powerful dy-
namic classifier. Later, we compare the performance of
this classifier on intrusion detection data.
LSTM uses special memory units, called memory cells,

containing Constant Error Carousels (CEC), which en-
force a constant error flow. Access to the cells is handled
by multiplicative gate units, which learn when to grant
access.
In a LSTM network all units in the hidden layer are

replaced with so-called memory blocks. Each memory

1

output layer

hidden layer

input layer

memory cell

optional

output gate

forget gate

input gate

Figure 1: Simple LSTM network.

block contains at least one memory cell with regulating
gates controlling incoming and outgoing information flow.
LSTM neural networks can be equipped with several mem-
ory blocks. Figure 1 shows a simple LSTM network with
one memory block.
The input of the memory cell passes from the previous

layer through a non-linear squashing function being scaled
to lie within [−2, 2]. It is then multiplied by the result of
the input gate with ranges between [0, 1]. Thus the signal
will only be able to pass if the signal from the input gate
is sufficiently close to one. In a similar way the output
of the memory cell is controlled by a non-linear squashing
function that ranges between [−1, 1] and multiplied by the
result of output gate that ranges as well between [0, 1].
The CEC is a simple linear unit with a self-recurrent

connection. The self-connection has a fixed weight set to
one to preserve the state of cell over time. Alternatively, a
forget gate can be attached to the self-connection. Forget
gates can learn to reset the state of the linear unit when
the stored information is no longer needed.
The gates are responsible for deciding what information

the central unit stores and when to apply that informa-
tion. They are simple sigmoid threshold units with an
activation function ranging over [0, 1]. The input for the
gates comes from the network input layer and from other
memory cells.
The output ycj (t) of a memory cell is computed in the

following way:

ycj (t) = youtj (t)(scj (t)

where youtj (t) is the activation and scj (t) is the state
of the output gate. The state is given by the following
recursive definition:

scj (0) = 0

and

scj (t) = scj (t− 1) + yinj (t) g(netcj (t)) for t > 1

where g(x) is an optional non-liniar squashing function
for the cell input.
LSTM neural networks can be trained with a combi-

nation of the backpropagation through time (BPTT) and
another RNN learning algorithm called real-time recurrent
learning (RTRL).
Backpropagation through time (BPTT) and other RNN

learning algorithms cannot look more than 10 to 12 time

pred. → 1 2
actual ↓ positive negative
1 positive a b
2 negative c d

Table 1: A confusion matrix for a binary problem.

steps into the past. Errors tend to either not be considered
at all or the learning algorithm places too much weight on
them. LSTM is a RNN architecture designed for super-
vised time-series learning that overcomes this problem. A
LSTM network can keep information over very long pe-
riods of time with at least 1,000 time steps. For these
reasons LSTM seems to be well suited for learning from
time series data.

4. MEASURES OF PERFORMANCE
For a meaningful performance comparison of different

classifiers it is necessary to at least agree on the data, and
what performance metrics are applied. Models build by
the classifier from the data are an approximation of the
true model. To evaluate these built models we need to
divide the available data into training and testing data.
The training data is used to build the model, and the
test data to evaluate it. Given that the labels of the test
data are known we can apply the following performance
metrics.

4.1 Mean Squared Error
For numeric prediction tasks the ‘mean squared error’

(MSE) is a common method. MSE quantifies the amount
by which an estimator differs from the targeted value. The
MSE of a dataset is the average of the sum of all sqared
errors of each pattern. Given n patterns of the dataset,
for the ith example, let pi be the predicted value and ai

the actual value. The MSE of the tested dataset is

MSE =

∑
n

i=0
(ai − pi)

2

n

4.2 Confusion Matrix
For two-class problems, the result of a classification can

either be predicted correctly or incorrectly. This yields
four different conditions:

• (a) True Positive - model correctly predicts positive

• (b) False Negative (type II error) - model incorrectly
predicts negative

• (c) False Positive (type I error) - model incorrectly
predicts positive

• (d) True Negative - model correctly predicts negative

A confusion matrix shows the predicted and the actual
classifications. The size of a confusion matrix is n × n,
where n is the number of different classes. The confusion
matrix shown in Table 1 is for a two-class problem.

4.3 Performance Measures Derived
From the counts of these four conditions we can calcu-

late the following simple performance measures:

• true positive rate (or detect rate) – portion of posi-
tive instances correctly predicted positive
a/(a+ b)

2

• false negative rate – portion of positive instances
wrongly predicted negative
b/(a+ b)

• false positive rate – portion of negative instances
wrongly predicted positive
c/(c+ d)

• true negative rate – portion of negative instances
correctly predicted negative
d/(c+ d)

• precision – probability an instance gets correctly clas-
sified
a/(a+ c)

• accuracy – proportion of test results the model pre-
dicts correctly
(a+ d)/(a+ b+ c+ d)

Accuracy and mean squared error are the most common
performance measures; other performance metrics can in-
clude the time an agorithm needs to build a model from
a dataset and/or the time to apply it on a dataset.
Simple performance measures like accuracy or error rate

are problematic. Accuracy, for instance, does not pro-
vide information on the performance per class. Missing
a positive or missing a negative is treated the same. If
the majority of examples in a dataset are negative than
a high accurancy might only be due to the exceptional
performance on these negative examples. Observing the
true positive rate may indicate that the performance on
the positive examples is very poor.
It is necessary to satisfy certain conditions to apply

these simple performance measures. These include an
equal number of examples in each class. For highly skewed
data where one class is much larger than the other these
metrics are not very meaningfull.

4.4 ROC Analysis
The Receiver Operating Characteristic (ROC) analysis

evaluates an algorithm over a range of possible operat-
ing scenarios. The ROC-graph is a two-dimensional plot
of the false-positive rate (x-axis) of a model against its
true-positive rate (y-axis). A true-positive rate of unity
and false-positive rate of zero are indicators for perfect
performance. The lower left point (0,0) in the graph rep-
resents a model with no false positive errors but also no
true positives. This model would always classify negative
but never positive. The opposite point at the upper right
(1,1) represents a model that always classifies positive and
never negative. The point at the upper left (0,1) on the
ROC-graph represents a model that always classifies cor-
rectly.
In two-type classification discrete classifiers generate as

a result a one class decision for every instance of a testset;
and all classified instances yield to one confusion matrix.
Each matrix has exactly one true positive rate and one
false-positive rate. These two produce a single point on
the ROC-graph.
This is in contrast to the result of probabilistic classi-

fiers, like neural networks, which produce a numeric value.
The value represents the probability that the observed in-
stance is a member of a specific class; where a higher value
indicates a higher probability. A decision threshold of e.g.
0.5 is used to produce the decision. If the value is above
the threshold the instance belongs to a specific class. A
value under the threshold is classified as noise. Every

threshold applied produces its own confusion matrix and
a different point on the ROC-graph.
To generate a ROC-curve the threshold is varied from

−∞ to +∞, or in case of neural networks with target
values in the range [0, 1] from 0 to 1. The resulting ROC-
curve of a successfully learned classifier should look like
an inverted ‘L’ with the corner pushing toward the upper
left of the graph. Results similar to random guessing yield
a diagonal line between [0, 0] and [1, 1].
One powerful strength of ROC-analysis is that it is in-

dependent from class distribution. The curve remains
the same if proportion of positive and negative examples
changes.
The Area Under the Curve (AUC) summarizes the ROC

curve in a single value as a measure for expected perfor-
mance. The AUC-value of a classifier is equal to the prob-
ability that a randomly chosen positive instance will be
ranked higher than a randomly chosen negative instance.
It is a value between 0 and 1. No meaningful classifier
should have a AUC-value below [0.5]. Depending on the
shape of the ROC-curves, a high AUC value of one clas-
sifier can perform worse in a specific region of the curve
than a low AUC value of another classifier. But in practise
the AUC value performs very well.

5. THE DATA
These experiments use the well-known datasets ([24])

from the 1999 KDDCup contest at the fifth International
Conference on Knowledge Discovery and Data Mining.
The learning task of this competition was to classify pre-
processed connection records to either normal traffic, or
one out of four given attack categories:

• denial of service (DoS)
Denial of service attacks try to exhaust network,
computing or memory resources of a target system.

• network probes
This kind of activity aims to gather information of a
target network and/or computer (e.g. IP- and port-
scanning activities).

• remote-to-local attacks (r2l)
First class of exploits which target network services
(like web-services) to gain user access to a target
system.

• user-to-root (u2r)
In the second class of exploits a user tries to execute
commands with superuser privileges. Various buffer
overflow attacks fall into this class.

Seven weeks of network traffic collected in four gigabytes
of compressed raw tcpdump files were preprocessed into
five million labelled and categorized connection records
with approximately 100 bytes each; and two weeks of
training data were processed into three million unlabelled
connections records (see [9]).
The KDDCup99 competition provides the disjoint train-

ing and testing datasets in a full and a so called ‘10%’ sub-
set version. The ‘10%’ subset was created due to the huge
volume of connection records in the full set; in particular
denial-of-service attacks have millions of records. For this
reason not all of these connection records were selected.
To achieve approximately the same distribution of in-

trusions and normal traffic as the original DARPA dataset
a selected set of sequences with ‘normal’ connections was

3

left in the 10% dataset as well; although the training and
test sets are of different probability distributions.
The connection records summarise the packets of one

communication session between a connection initiator with
a specified source IP address and a destination IP address
over a pair of TCP/UDP ports. The labeled connection
records in the training set are categorized normal or in-
dicate one of 22 types of attacks. Although more then
ten years old, the KDDCup99 dataset is the most well
known and fully labelled intrusion detection dataset pub-
lically available today. For this reason it is well suited for
classifier performance evaluation.

6. EXPERIMENTS
First experiments were run with different parameters

and structures of an LSTM neural network; such as the
number of memory blocks and the cells per memory block,
the learning rate and the number of passes through data.
Succeeding experiments were run with a layer of hidden
neurons, peephole connections, forget gates and LSTM
shortcuts; all being extensions of LSTM as documented
in [6].

6.1 Network Parameters
Experiments were started with a basic LSTM network

using 43 input neurons, two memory blocks with two cells
each, peephole connections, and five target neurons. The
input neurons were fully connected to the hidden layer
with the two memory blocks. The number of iterations
was fixed to 50 training cycles (epochs). The 10% train-
ing dataset was used for training and the 10% corrected
dataset was used for testing. All values of the input fea-
tures were preprocessed to the range [-1,1], including nu-
meric and nominal features.
Each nominal target value was mapped to one of the

five connection classes, each represented by a target neu-
ron with an binary value. The target values were tested in
the order ‘normal’, ‘dos’, ‘probe’, ‘u2r’ and ‘r2l’, to min-
imize the number of false positives. The traffic was clas-
sified according to the first value larger than the decision
threshold. The decision threshold was set to [0.5]. Clas-
sified cases where no output was larger than the decision
threshold were set as ‘normal’ per default.
The performance of the learned networks was evaluated

by observation of the confusion matrix and by calculat-
ing the accuracy. To find a suitable learning rate for the
datasets, it was varied in the interval [0.01−0.5]; no weight
decay was used.
In a second step different ‘pure’ feed-forward networks

and hybrid-networks including hidden neurons and LSTM
memory blocks were compared. The number of hidden
layers was fixed to one in all experiments. Improvements
with more than one hidden layer were not expected. For
both types of networks experiments were run with 5, 10,
15, 20, 32, 43 and 86 hidden neurons. Each experiment
consisted of eight trials. The best performing result was
selected.
Finally, consecutively forget gates (no manual reset),

peephole connections and shortcuts to the basic LSTM
network were added to assess their impact to learning per-
formance.
Experiments with lower learning rates showed a slightly

better classification performance. Naturally for a low learn-
ing rate the expected number of required iterations for low
frequency attacks are very large (> 10000Epochs). As a
trade-off between training time and classification perfor-

mance the learning rate was set to 0.1 for all following
experiments.
All LSTM-hybrid-networks showed good performance

in terms of accuracy. Learning of the hybrid-networks was
faster as well. The best results were achieved using one
feed-forward layer with 20 hidden neurons. All trained
networks achieved ‘good’ results with an accuracy > 90%,
but they were less accurate than results possible with a
standard LSTM. The generalization performance of the
hybrid-network seems to be weakened in comparison to a
LSTM network without a hidden layer. Furthermore the
detection rate on rare and ‘difficult-to-learn r2l and u2r’
attacks decreased.
Experiments with forget gates, peephole connections

and shortcuts yielded an average to better classification.
In all futher experiments forget gates, peephole connec-
tions and shortcuts were used.

6.2 Network Structure
To find a suitable network structure for training the KD-

DCup99 data, experiments were run with LSTM networks
using the following four topologies:

• Two memory blocks with two cells each

• Four memory blocks with two cells each

• Four memory blocks with four cells each

• Eight memory blocks with four cells each

All networks used forget gates, peephole connections
and shortcuts. The learning rate was fixed to 0.1 and the
decision threshold was set to 0.5. Traffic classification was
according to the first value larger than the threshold in the
order ‘normal’, ‘dos’, ‘probe’, ‘r2l’ and ‘u2r’. Default clas-
sification was ‘normal’. The preprocessed ‘10% training’
and the ‘10% corrected’ testset datasets with all features
were used.
To find the minimum number of required iterations the

training data was presented for five to up to one thousand
epochs to each of the four observed network structures.
We run eight trials of each network setup.
Results with good accuracy for attack detection (at-

tack/normal two-class categorization) at reasonable cost
was reached at 60-150 epochs. The lowest standard er-
ror was achieved after little more than 500 epochs for all
four network topologies. More complex LSTM networks
needed more iterations to get acceptable results but finally
attained a higher accuracy as well.
For each of the five attack classes the LSTM network

requires a different number of optimal iterations. After
learning a specific traffic type the network starts over-
fitting. From that point the network improves in memoriz-
ing the training data and the generalization performance
decreases for that specific traffic type.
After 25-90 epochs most networks learned DoS attacks

and after 50-125 epochs probe attacks are learned. The
rare attack categories r2l and u2r need many more presen-
tations of the training data. Attacks of the class r2l need
200-1000 epochs and u2r attacks need 125-1000 epochs un-
til they are learned as well as possible. Rare attacks might
require more than 1000 presentations of the training data.
After 500-600 epochs approximately 50% of the trials

get results with an low error rate. The performance of all
networks decreases after further training. In comparison
to standard neural networks with a hidden layer, LSTM
is more prone to over-fitting.

4

Figure 2: Standard error (1-accuracy) develop-
ment for two-class categorization of best three tri-
als of the four different network structures in de-
pendency of epochs trained.

Out of the eight trials of each experiment three showed
high accuracy for normal/attack two-class categorization.
The development of the standard error rate is plotted in
Figure 2.
With increasing size of the LSTM network learning re-

quires more presentations of the training data. Rare ‘r2l’
attacks require more than 1000 epochs on the two larger
networks. On the other hand the small LSTM network
with two memory blocks has problems to learn the very
rare and difficult to learn ‘u2r’ attacks.
We think that networks with four memory blocks each

containing two cells offer a good compromise between cal-
culation cost and detection performance. This type of net-
work structure was used by us for our next experiments.

6.3 Performance Analysis
As learned from previous experiments, LSTM networks

with four memory blocks containing two memory cells
each were built. Forget gates, peephole connections, short-
cuts and a fixed learning rate of 0.1 were used.
For these experiments ROC-curves were added as a per-

formance measure. As required for ROC analysis no clas-
sification threshold was applied. All output values of all
five target neurons for every tested pattern was recorded.
At the end of every trial a full 5× 5 confusion matrix was
generated, accuracy for the resulting network was calcu-
lated, and for every target neuron detection rate, precision
and the AUC-value were calculated. The target output
with the highest numerical value was used for traffic clas-
sification.
For the ROC calculations we used proproc [18] to esti-

mate the curve from the case ratings. For curve estima-
tion we chose an non-parametic estimate [2]. The proproc
software and support was kindly provided without cost on
request by the developers [15].
For training the ‘10%’ training dataset was used. The

performance was tested on the training set and as well on
the ‘10% corrected’ testset. The networks were trained

for up to 1000 epochs. The performance of the trained
network was measured at 25, 50, 75, 90, 100, 125, 150,
175, 200, 250, 300, 400, 500, 600, 750 and 1000 epochs.
Every experiment contained 30 trials.
Since multi-class ROC graphs are not plotable we ex-

amined the five target neurons of every trained LSTM
network separately. Every target neuron represents one
traffic class. We generated our own ROC graph and cal-
culated the AUC value for each of the five traffic classes:
‘normal’, ‘dos’, ‘probe’, ‘r2l’ und ‘u2r’.
Figure 3 shows the ROC-plots of the highest AUC value

achieved for each attack traffic class. For reasons of com-
parison all 30 trials are plotted. We calculated detect rate
and precision of each neuron as well. To support perfor-
mance comparison the plots are flagged with different line
types according to their detect rate.
The ROC curves show that the network actually learned

at least parts of all five traffic classes. The bumpy ROC
curves are expected since we present classes of traffic (‘nor-
mal’, ‘dos’, ‘probe’, ‘r2l’ and ‘u2r’) with every class con-
tains subclasses (e.g. different attacks). During the learn-
ing process, distinguishable subclasses do appear as bumps
in the ROC graph.
The Table 2 shows two corresponding confusion matri-

ces for dos attacks and network probes with an exceptional
good performance.

7. CONCLUSIONS
These experiments evaluate the performance of LSTM

recurrent neural networks applied to intrusion detection
data. Selected experimental parameters on a number of
chosen network topologies are discussed. Performance is
measured in terms of a confusion matrix, accuracy, ROC-
curve and the AUC-value. Our results show that ROC-
curves are well suited for selecting well performing net-
works.
Trained LSTM-networks learned all five traffic classes

at least partially. The deviation of the ROC-curves from
a straight diagonal between the coordinates [0,0] and [1,0]
to a curve bowing into the corner [1,0] is recognisable in
all graphs.
In most well trained networks the target neurons rep-

resenting normal traffic and network probes showed an
excellent performance. The target neuron representing
DoS attacks even achieves close to perfect discrimination
between attacks and other traffic. Even the ROC-Curves
of the remaining two most difficult to learn attack classes
‘r2l’ and ‘u2r’ show that LSTM is in fact able to learn
these, although it might require further training or differ-
ent features to be added to the data.
In future work, we will apply LSTM to more recent

intrusion detection datasets and evaluate the performance
of complex LSTM neural network structures on network
traffic metadata.

8. REFERENCES

[1] S. Chavan, K. Shah, N. Dave, S. Mukherjee,
A. Abraham, and S. Sanyal. Adaptive neuro-fuzzy
intrusion detection systems. In International
Conference on Information Technology: Coding and
Computing, volume 1, pages 70–74 Vol.1. IEEE,
2004.

[2] E. R. DeLong, D. M. DeLong, and D. L.
Clarke-Pearson. Comparing the Areas under Two or
More Correlated Receiver Operating Characteristic

5

Figure 3: ROC curves for the target neurons representing the four atttack traffic classes

Curves: A Nonparametric Approach. Biometrics,
44(3):837, Sept. 1988.

[3] C. Elkan. Results of the KDD’99 classifier learning.
ACM SIGKDD Explorations Newsletter, 1(2):63,
Jan. 2000.

[4] J. L. Elman. Finding Structure in Time. Cognitive
Science, 14(2):179–211, Mar. 1990.

[5] T. Fawcett. An introduction to ROC analysis.
Pattern Recognition Letters, 27(8):861–874, June
2006.

[6] F. A. F. A. Gers, J. J. Schmidhuber, and
F. Cummins. Learning to forget: Continual
prediction with LSTM. Technical Report
IDSIA-01-99, IDSIA, Lugano, Lugano, CH, Oct.
1999.

[7] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Technical Report 8, Technische Universität

Muenchen, 1997.

[8] M. I. Jordan. Attractor dynamics and parallelism in
a connectionist sequentialmachine. In Proceedings of
the Eigth Annual Conference of the Cognitive
Science Society, pages 531–546, 1986.

[9] W. Lee and S. J. Stolfo. A framework for
constructing features and models for intrusion
detection systems. ACM Transactions on
Information and System Security, 3(4):227–261,
Nov. 2000.

[10] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba,
and K. Das. The 1999 DARPA off-line intrusion
detection evaluation. Computer Networks,
34(4):579–595, Oct. 2000.

[11] R. P. Lippmann, D. J. Fried, I. Graf, J. W. Haines,
K. R. Kendall, D. McClung, D. Weber, S. E.
Webster, D. Wyschogrod, R. K. Cunningham,

6

prediction→ 1 2 3 4 5 %correct
actual↓ u2r r2l pro dos nor detect rate
u2r 2 0 0 1 67 2.86
r2l 0 10 124 6 16205 0.06
pro 3 0 3584 215 364 86.03
dos 0 0 113 223876 5864 97.40
nor 1 0 229 74 60282 99.50
%correct accuracy
precision 33.33 1.00 88.49 99.87 72.82 92.67

prediction→ 1 2 3 4 5 %correct
actual↓ u2r r2l pro dos nor detect rate
u2r 19 2 5 5 39 27.14
r2l 4 1312 173 11 14845 8.03
pro 0 0 3872 251 43 92.94
dos 0 3 212 224155 5483 97.52
nor 88 69 596 916 58917 97.25
%correct accuracy
precision 17.12 94.66 79.70 99.48 74.27 92.90

Table 2: confusion matrixes for two performing networks in terms of DoS attacks and network probes

M. Zissman, and Others. Evaluating intrusion
detection systems: the 1998 DARPA off-line
intrusion detection evaluation. In Proceedings
DARPA Information Survivability Conference and
Exposition. DISCEX’00, volume 2, pages 12–26.
IEEE, IEEE Comput. Soc, 2000.

[12] M. V. Mahoney and P. K. Chan. An analysis of the
1999 DARPA/Lincoln Laboratory evaluation data
for network anomaly detection. Recent Advances in
Intrusion Detection, 2820(Ll):220–237, 2003.

[13] M. A. Maloof. Some basic concepts of machine
learning and data mining. In Machine Learning and
Data Mining for Computer Security, Advanced
Information and Knowledge Processing, pages
23–43. Springer London, 2006.

[14] J. McHugh. Testing Intrusion detection systems: a
critique of the 1998 and 1999 DARPA intrusion
detection system evaluations as performed by
Lincoln Laboratory. ACM Transactions on
Information and System Security, 3(4):262–294,
Nov. 2000.

[15] C. E. Metz, Y. Jiang, H. MacMahon, R. M.
Nishikawa, and X. Ran. ROC software.
http://metz-roc.uchicago.edu/. Accessed:
2013-08-27.

[16] S. Mukkamala, G. Janoski, and A. Sung. Intrusion
detection using neural networks and support vector
machines. In Proceedings of the 2002 International
Joint Conference on Neural Networks. IJCNN’02
(Cat. No.02CH37290), pages 1702–1707. IEEE,
2002.

[17] S. Peddabachigari, A. Abraham, C. Grosan, and
J. Thomas. Modeling intrusion detection system
using hybrid intelligent systems. Journal of Network
and Computer Applications, 30(1):114–132, Jan.
2007.

[18] L. L. Pesce and C. E. Metz. Reliable and
computationally efficient maximum-likelihood
estimation of “proper” binormal ROC curves.
Academic radiology, 14(7):814–29, July 2007.

[19] J. R. J. Quinlan. C4.5: programs for machine
learning. Morgan Kaufmann Publishers Inc., Mar.
1993.

[20] D. Z. Ronald J. Williams, R. J. R. Williams, and
D. Zipser. Gradient-based learning algorithms for
recurrent networks and their computational
complexity. In Back-propagation: Theory,
Architectures and Applications, pages 1–45. L.
Erlbaum Associates Inc., Jan. 1995.

[21] D. E. Rumelhart, G. E. Hinton, R. J. Williams,
D. Rummelhart, and W. R.J. Learning Internal
Representations by Error Propagation. In J. L.
McClelland and D. E. Rumelhart, editors, Parallel
distributed processing: explorations in the
microstructure of cognition, volume 1, pages
318–362. MIT Press, Jan. 1986.

[22] M. Sabhnani and G. Serpen. Application of machine
learning algorithms to KDD intrusion detection
dataset within misuse detection context. In
Proceedings of the International Conference on
Machine Learning; Models, Technologies and
Applications, pages 209–215. CSREA Press, 2003.

[23] M. Sabhnani and G. Serpen. Why machine learning
algorithms fail in misuse detection on KDD
intrusion detection data set. Intelligent Data
Analysis, 6(2002):1–13, Sept. 2004.

[24] M. Tavallaee, E. Bagheri, W. Lu, and A. A.
Ghorbani. A detailed analysis of the KDD CUP 99
data set. In 2009 IEEE Symposium on
Computational Intelligence for Security and Defense
Applications, number Cisda, pages 1–6. IEEE, July
2009.

[25] P. Werbos. Backpropagation through time: what it
does and how to do it. Proceedings of the IEEE,
78(10):1550–1560, 1990.

[26] R. J. Williams and D. Zipser. Experimental Analysis
of the Real-time Recurrent Learning Algorithm.
Connection Science, 1(1):87–111, Jan. 1989.

7

View publication stats

https://www.researchgate.net/publication/261635371

